Friday, March 16, 2018

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 38

Recall that indefinite integral follows int f(x) dx = F(x) +C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration..
To evaluate the given integral problem: int x^2/sqrt(2x-x^2) dx , we apply completing the square on the expression: 2x-x^2 .
Completing the square:
Factor out (-1) from 2x-x^2 to get (-1)(x^2-2x)
The x^2-2x or x^2-2x+0 resembles ax^2+bx+c where:
a= 1 and b =-2 that we can plug-into (-b/(2a))^2 .
(-b/(2a))^2= (-(-2)/(2*1))^2
= (2/2)^2
= 1^2
=1
To complete the square, we add and subtract 1 inside the ():
(-1)(x^2-2x) =(-1)(x^2-2x+1 -1)
Distribute (-1) in "-1 "to move it outside the () .
(-1)(x^2-2x+1 -1)= (-1)(x^2-2x+1)+ (-1)(-1)
= (-1)(x^2-2x+1)+ 1
Apply factoring for the perfect square trinomial: x^2-2x+1= (x-1)^2
(-1)(x^2-2x+1)+ 1=-(x-1)^2 + 1
= 1-(x-1)^2
Apply 2x-x^2=1-(x-2)^2 to the integral, we get: int x^2/sqrt(1-(x-1)^2) dx
Apply u-substitution by letting u =x-1 then x = u+1 and du =dx . The integral becomes:
int x^2/sqrt(1-(x-1)^2) dx=int (u+1)^2/sqrt(1-u^2) du
Apply FOIL method on (u+1)^2 , we get:
(u+1)^2 = (u+1) *(u+1)
= u*u +u*1 + 1*u +1*1
= u^2 +u+u+1
= u^2+2u +1
Plug-in (u+1)^2= u^2+2u +1 on the integral, we get:
int (u+1)^2/sqrt(1-u^2) dx =int (u^2+2u +1)/sqrt(1-u^2) du
Apply the basic integration property: int (u+v+w) dx = int (u) dx + int (v) dx+int (w) dx .
int (u^2+2u +1)/sqrt(1-u^2) du=int u^2/sqrt(1-u^2) du +int (2u)/sqrt(1-u^2) du+int 1/sqrt(1-u^2) du
Each integral resembles formula from integration table for rational function with roots. For the first integral, we follow: int (x^2 dx)/sqrt(a^2-x^2) =-(xsqrt(a^2-x^2))/2 +(a^2arcsin(x/a))/2 +C .
Then,
int u^2/sqrt(1-u^2) du =-(usqrt(1-u^2))/2 +(1arcsin(u/1))/2
=-(usqrt(1-u^2))/2 +arcsin(u)/2
For second integral, we follow: int x/sqrt(a^2-x^2)dx= -sqrt(a^2-x^2)+C .
int (2u)/sqrt(1-u^2) du =2int u/sqrt(1-u^2) du
=2 *[-sqrt(1-u^2)]
=-2sqrt(1-u^2)
For the third integral, we follow: int dx/(a^2-x^2)dx=arcsin(x/a)+C .
int 1/sqrt(1-u^2) du = arcsin(u/1) or arcsin(u)
Combining the results, we get:
int (u^2+2u +1)/sqrt(1-u^2) du=-(usqrt(1-u^2))/2 +arcsin(u)/2-2sqrt(1-u^2)+arcsin(u) +C
Plug-in u = x-1 , we get the indefinite integral as:
int x^2/sqrt(2x-x^2) dx
=-((x-1)sqrt(1-(x-1)^2))/2 +arcsin(x-1)/2-2sqrt(1-(x-1)^2)+arcsin(x-1) +C
Recall 1-(x-1)^2 = 2x-x^2 then the integral becomes:
int x^2/sqrt(2x-x^2)dx
= (( -x+1)sqrt(2x-x^2))/2 +arcsin(x-1)/2-(4sqrt(2x-x^2))/2+(2arcsin(x-1))/2 +C
= [arcsin(x-1) + 2arcsin(x-1)]/2 + [( -x+1)sqrt(2x-x^2)-4sqrt(2x-x^2)]/2+C
=(3arcsin(x-1))/2 + ((-x-3)sqrt(2x-x^2))/2 +C
=(3arcsin(x-1))/2 +((-1)(x+3)sqrt(2x-x^2))/2 +C
=(3arcsin(x-1))/2-((x+3)sqrt(2x-x^2))/2 +C
or (3arcsin(x-1))/2-(xsqrt(2x-x^2))/2 -(3sqrt(2x-x^2))/2+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...