Recall that indefinite integral follows int f(x) dx = F(x) +C
where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration..
To evaluate the given integral problem: int x^2/sqrt(2x-x^2) dx , we apply completing the square on the expression: 2x-x^2 .
Completing the square:
Factor out (-1) from 2x-x^2 to get (-1)(x^2-2x)
The x^2-2x or x^2-2x+0 resembles ax^2+bx+c where:
a= 1 and b =-2 that we can plug-into (-b/(2a))^2 .
(-b/(2a))^2= (-(-2)/(2*1))^2
= (2/2)^2
= 1^2
=1
To complete the square, we add and subtract 1 inside the ():
(-1)(x^2-2x) =(-1)(x^2-2x+1 -1)
Distribute (-1) in "-1 "to move it outside the () .
(-1)(x^2-2x+1 -1)= (-1)(x^2-2x+1)+ (-1)(-1)
= (-1)(x^2-2x+1)+ 1
Apply factoring for the perfect square trinomial: x^2-2x+1= (x-1)^2
(-1)(x^2-2x+1)+ 1=-(x-1)^2 + 1
= 1-(x-1)^2
Apply 2x-x^2=1-(x-2)^2 to the integral, we get: int x^2/sqrt(1-(x-1)^2) dx
Apply u-substitution by letting u =x-1 then x = u+1 and du =dx . The integral becomes:
int x^2/sqrt(1-(x-1)^2) dx=int (u+1)^2/sqrt(1-u^2) du
Apply FOIL method on (u+1)^2 , we get:
(u+1)^2 = (u+1) *(u+1)
= u*u +u*1 + 1*u +1*1
= u^2 +u+u+1
= u^2+2u +1
Plug-in (u+1)^2= u^2+2u +1 on the integral, we get:
int (u+1)^2/sqrt(1-u^2) dx =int (u^2+2u +1)/sqrt(1-u^2) du
Apply the basic integration property: int (u+v+w) dx = int (u) dx + int (v) dx+int (w) dx .
int (u^2+2u +1)/sqrt(1-u^2) du=int u^2/sqrt(1-u^2) du +int (2u)/sqrt(1-u^2) du+int 1/sqrt(1-u^2) du
Each integral resembles formula from integration table for rational function with roots. For the first integral, we follow: int (x^2 dx)/sqrt(a^2-x^2) =-(xsqrt(a^2-x^2))/2 +(a^2arcsin(x/a))/2 +C .
Then,
int u^2/sqrt(1-u^2) du =-(usqrt(1-u^2))/2 +(1arcsin(u/1))/2
=-(usqrt(1-u^2))/2 +arcsin(u)/2
For second integral, we follow: int x/sqrt(a^2-x^2)dx= -sqrt(a^2-x^2)+C .
int (2u)/sqrt(1-u^2) du =2int u/sqrt(1-u^2) du
=2 *[-sqrt(1-u^2)]
=-2sqrt(1-u^2)
For the third integral, we follow: int dx/(a^2-x^2)dx=arcsin(x/a)+C .
int 1/sqrt(1-u^2) du = arcsin(u/1) or arcsin(u)
Combining the results, we get:
int (u^2+2u +1)/sqrt(1-u^2) du=-(usqrt(1-u^2))/2 +arcsin(u)/2-2sqrt(1-u^2)+arcsin(u) +C
Plug-in u = x-1 , we get the indefinite integral as:
int x^2/sqrt(2x-x^2) dx
=-((x-1)sqrt(1-(x-1)^2))/2 +arcsin(x-1)/2-2sqrt(1-(x-1)^2)+arcsin(x-1) +C
Recall 1-(x-1)^2 = 2x-x^2 then the integral becomes:
int x^2/sqrt(2x-x^2)dx
= (( -x+1)sqrt(2x-x^2))/2 +arcsin(x-1)/2-(4sqrt(2x-x^2))/2+(2arcsin(x-1))/2 +C
= [arcsin(x-1) + 2arcsin(x-1)]/2 + [( -x+1)sqrt(2x-x^2)-4sqrt(2x-x^2)]/2+C
=(3arcsin(x-1))/2 + ((-x-3)sqrt(2x-x^2))/2 +C
=(3arcsin(x-1))/2 +((-1)(x+3)sqrt(2x-x^2))/2 +C
=(3arcsin(x-1))/2-((x+3)sqrt(2x-x^2))/2 +C
or (3arcsin(x-1))/2-(xsqrt(2x-x^2))/2 -(3sqrt(2x-x^2))/2+C
Friday, March 16, 2018
Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 38
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment