Saturday, March 31, 2018

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 86

If f(x)=x2, x>0, f(1)=0 and f(2)=0, find f
If f(x)=x2, then by applying integration...

f(x)=x2dx=x11+c1=1x+c1

Again, by applying integration...

f(x)=(1x+c1)dxf(x)=lnx+c1x+c2


If f(1)=0, then

0=ln(1)+c1(1)+c20=c1+c2c1=c2(Equation 1)

Also, if f(2)=0, then

0=ln(2)+c1(2)+c2ln(2)=2c1+c2(Equation 2)

By using Equations 1 and 2 simultaneously...

ln(2)=2c1c1c1=ln2

Thus, c2=ln2
Therefore,
f(x)=lnx+xln(2)ln(2)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...