Saturday, March 10, 2018

Precalculus, Chapter 7, 7.4, Section 7.4, Problem 37

x/(16x^4-1)
Let's factorize the denominator,
16x^4-1=(4x^2)^2-1
=(4x^2+1)(4x^2-1)
=(4x^2+1)(2x+1)(2x-1)
Let x/(16x^4-1)=A/(2x+1)+B/(2x-1)+(Cx+D)/(4x^2+1)
x/(16x^4-1)=(A(2x-1)(4x^2+1)+B(2x+1)(4x^2+1)+(Cx+D)(2x+1)(2x-1))/((2x+1)(2x-1)(4x^2+1))
x/(16x^4-1)=(A(8x^3+2x-4x^2-1)+B(8x^3+2x+4x^2+1)+(Cx+D)(4x^2-1))/((2x+1)(2x-1)(4x^2+1))
x/(16x^4-1)=(A(8x^3-4x^2+2x-1)+B(8x^3+4x^2+2x+1)+4Cx^3-Cx+4Dx^2-D)/((2x+1)(2x-1)(4x^2+1))
x/(16x^4-1)=(x^3(8A+8B+4C)+x^2(-4A+4B+4D)+x(2A+2B-C)-A+B-D)/((2x+1)(2x-1)(4x^2+1))
:.x=x^3(8A+8B+4C)+x^2(-4A+4B+4D)+x(2A+2B-C)-A+B-D
equating the coefficients of the like terms,
8A+8B+4C=0 ----- equation 1
-4A+4B+4D=0 ----- equation 2
2A+2B-C=1 ----- equation 3
-A+B-D=0 ------ equation 4
Now we have to solve the above four equations to find the solutions of A,B,C and D.
From equation 1,
4(2A+2B+C)=0
2A+2B+C=0
Subtract equation 3 from the above equation,
(2A+2B+C)-(2A+2B-C)=0-1
2C=-1
C=-1/2
From equation 2,
4(-A+B+D)=0
-A+B+D=0
Now subtract equation 4 from the above equation,
(-A+B+D)-(-A+B-D)=0
2D=0
D=0
Now plug in the values of C in the equation 3,
2A+2B-(-1/2)=1
2A+2B+1/2=1
2A+2B=1-1/2
2(A+B)=1/2
A+B=1/4 ----- equation 5
Plug in the value of D in the equation 4,
-A+B-0=0
-A+B=0 ---- equation 6
Now add the equations 5 and 6,
2B=1/4
B=1/8
Plug in the value of B in the equation 6,
-A+1/8-0
A=1/8
:.x/(16x^4-1)=(1/8)/(2x+1)+(1/8)/(2x-1)+((-1/2)x)/(4x^2+1)
x/(16x^4-1)=1/(8(2x+1))+1/(8(2x-1))-x/(2(4x^2+1))

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...