Tuesday, March 6, 2018

Precalculus, Chapter 5, 5.4, Section 5.4, Problem 12

You need to evaluate the sine of (7pi)/12 , using the formula sin(a+b) = sin a*cos b + sin b*cos a such that:
sin ((7pi)/12)= sin(pi/3 + pi/4) = sin (pi/3)*cos (pi/4) + sin (pi/4)*cos (pi/3)
sin ((7pi)/12)=(sqrt3)/2*(sqrt2)/2 + (sqrt2)/2*1/2
sin ((7pi)/12) = (sqrt2)/2*(sqrt3 + 1)/2
You need to evaluate the cosine of (7pi)/12 , using the formula cos(a+b) = cos a*cos b - sin b*sin a such that:
cos ((7pi)/12) = cos (pi/3 + pi/4) = cos (pi/3)*cos (pi/4)- sin ( pi/4)*sin (pi/3)
cos ((7pi)/12)= 1/2*(sqrt2)/2 - (sqrt2)/2*(sqrt3)/2
cos((7pi)/12) = (sqrt2)/2*(1 - sqrt3)/2
You need to evaluate the tangent of (7pi)/12 , such that:
tan ((7pi)/12) = (sin((7pi)/12))/(cos ((7pi)/12))
tan ((7pi)/12) = ((sqrt2)/2*(sqrt3 + 1)/2)/((sqrt2)/2*(1 - sqrt3)/2)
tan((7pi)/12) = (sqrt3 + 1)/(1 - sqrt3)
tan((7pi)/12) = ((sqrt3 + 1)*(1 + sqrt3))/(1 - 3)
tan((7pi)/12)) = -((sqrt3 + 1)^2)/2
Hence, evaluating the sine, cosine and tangent of tan(7pi)/12 , yields sin((7pi)/12 ) = (sqrt2)/2*(sqrt3 + 1)/2, cos ( (7pi)/12 ) = (sqrt2)/2*(1 - sqrt3)/2, tan (7pi)/12 = -((sqrt3 + 1)^2)/2.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...