Thursday, March 8, 2018

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 23

Given ,
int sqrt(16-4x^2)dx
This Integral can be solved by using the Trigonometric substitutions (Trig substitutions)
For sqrt(a-bx^2) we have to take x= sqrt(a/b) sin(u)

so here , For
int sqrt(16-4x^2)dx -----(1)
x can be given as
x= sqrt(16/4) sin(u)= sqrt(4) sin(u) = 2sin(u)
so, x= 2sin(u) => dx = 2 cos(u) du
Now substituting x in (1) we get,
int sqrt(16-4x^2)dx
=int sqrt(16-4(2sin(u))^2) (2 cos(u) du)
= int sqrt(16-4*4(sin(u))^2) (2 cos(u) du)
= int sqrt(16-16(sin(u))^2) (2 cos(u) du)
= int sqrt(16(1-(sin(u))^2)) (2 cos(u) du)
= int sqrt(16(cos(u))^2) (2 cos(u) du)
= int (4cos(u)) (2 cos(u) du)
= int 8cos^2(u) du
= 8 int cos^2(u) du
= 8 int (1+cos(2u))/2 du
= (8/2) int (1+cos(2u)) du
= 4 int (1+cos(2u)) du
= 4 [int 1 du +int cos(2u) du]
= 4 [u+(1/2)(sin(2u))] +c
but x= 2sin(u)
=> (x/2)= sin(u)
=> u= sin^(-1) (x/2)
so,
4 [u+(1/2)(sin(2u))] +c
=4 [sin^(-1) (x/2)+1/2sin(2(sin^(-1) (x/2)))] +c
so,
int sqrt(16-4x^2)dx
=4sin^(-1) (x/2)+2sin(2(sin^(-1) (x/2))) +c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...