Wednesday, February 8, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 76

Determine the equations of the tangent lines to the curve $\displaystyle y = \frac{x-1}{x+1}$ that
are parallel to the line $x - 2y = 2$



$
\begin{equation}
\begin{aligned}
\text{Given:}&&& \text{Curve}\quad y = \frac{x-1}{x+1}\\
\phantom{x}&&& \text{Line} \quad x - 2y = 2
\end{aligned}
\end{equation}
$


The slope$(m)$ of the curve and the line are equal because they are parallel.

$
\begin{equation}
\begin{aligned}
x - 2y &= 2
&& \text{Solving for slope}(m) \text{ using the equation of the line}\\
\\
-2y & = 2-x
&& \text{Transpose } x \text{ to the other side}\\
\\
\frac{-2y}{-2} &= \frac{2-x}{-2}
&& \text{Divide both sides by -2}\\
\\
y &= \frac{x-2}{2}
&& \text{Simplify the equation}\\
\\
y &= \frac{1}{2}x - 1
&& \text{Use the formula of general equation of the line to get the slope}(m)\\
\\
y &= mx + b
&& \text{Slope}(m) \text{ is the numerical coefficient of $x$}\\
\\
m &= \frac{1}{2}\\
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
y &= \frac{x-1}{x+1}\\
\\
y' &= \frac{(x+1) \frac{d}{dx} (x-1) - \left[ (x-1) \frac{d}{dx} (x+1) \right]}{(x+1)^2}
&& \text{Using Quotient Rule}\\
\\
y' &= \frac{(x+1)(1) - (x-1)(1)}{(x+1)^2}
&& \text{Simplify the equation}\\
\\
y' &= \frac{x+1-x+1}{(x+1)^2}
&& \text{Combine like terms}\\
\\
y' &= \frac{2}{(x+1)^2}
\end{aligned}
\end{equation}
$


Let $y'=$ slope$(m)$

$
\begin{equation}
\begin{aligned}
y' &= m = \frac{2}{(x+1)^2}
&& \text{Substitute value of slope}(m)\\
\\
\frac{1}{2} &= \frac{2}{(x+1)^2}
&& \text{Using cross multiplication}\\
\\
(x+1)^2 &= 4
&& \text{Take the square root of both sides}\\
\\
\sqrt{(x+1)^2} &= \pm \sqrt{4}
&& \text{Simplify the equation}\\
\\
x+1 &= \pm 2
&& \text{Solve for }x \\
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
x &= 2 -1 &&& x &= -2-1\\
x &= 1 &&& x &= -3
\end{aligned}
\end{equation}
$


Using the equation of the curve given,
@ $x= 1$

$
\begin{equation}
\begin{aligned}
y &= \frac{x-1}{x+1}
&& \text{Substitute the value of }x = 1\\
\\
y &= \frac{1-1}{1+1}
&& \text{Combine like terms}\\
\\
y &= \frac{0}{2}
&& \text{Simplify the equation}\\
\\
y &= 0
\end{aligned}
\end{equation}
$


@ $x=-3$

$
\begin{equation}
\begin{aligned}
y &= \frac{x-1}{x+1}
&& \text{Substitute the value of } x = -3\\
\\
y &= \frac{-3-1}{-3+1}
&& \text{Combine like terms}\\
\\
y &= \frac{-4}{-2}
&& \text{Simplify the equation}\\
\\
y &= 2
\end{aligned}
\end{equation}
$


Using point slope form to get the equations of the tangent line
@ $x=1$, $y=0$, $\displaystyle m = \frac{1}{2}$


$
\begin{equation}
\begin{aligned}
y - y_1 &= m(x-x_1)
&& \text{Substitute the value of } x,y \text{ and slope}(m)\\
\\
y - 0 &= \frac{1}{2} (x-1)
&& \text{Simplify the equation}
\end{aligned}
\end{equation}
$


The equation of the tangent line @ $x =1$, $y =0$ is $\displaystyle y = \frac{x-1}{2}$

@ $x = -3$, $y = 2$, $\displaystyle m = \frac{1}{2} $


$
\begin{equation}
\begin{aligned}
y -y_1 &= m(x-x_1)
&& \text{Substitute the value of } x,y \text{ and slope}(m)\\
\\
y - 2 & = \frac{1}{2} (x+3)
&& \text{Distribute } \frac{1}{2} \text{ in the equation}\\
\\
y - 2 & = \frac{x+3}{2}
&& \text{Transpose -2 to the right side}\\
\\
y & = \frac{x+3}{2} +2
&& \text{Get the LCD}\\
\\
y & = \frac{x+3+4}{2}
&& \text{Combine like terms}
\end{aligned}
\end{equation}
$


The equation of the tangent line @ $x=-3$, $y = 2$ is $\displaystyle y = \frac{x+7}{2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...