Determine the equations of the tangent lines to the curve $\displaystyle y = \frac{x-1}{x+1}$ that
are parallel to the line $x - 2y = 2$
$
\begin{equation}
\begin{aligned}
\text{Given:}&&& \text{Curve}\quad y = \frac{x-1}{x+1}\\
\phantom{x}&&& \text{Line} \quad x - 2y = 2
\end{aligned}
\end{equation}
$
The slope$(m)$ of the curve and the line are equal because they are parallel.
$
\begin{equation}
\begin{aligned}
x - 2y &= 2
&& \text{Solving for slope}(m) \text{ using the equation of the line}\\
\\
-2y & = 2-x
&& \text{Transpose } x \text{ to the other side}\\
\\
\frac{-2y}{-2} &= \frac{2-x}{-2}
&& \text{Divide both sides by -2}\\
\\
y &= \frac{x-2}{2}
&& \text{Simplify the equation}\\
\\
y &= \frac{1}{2}x - 1
&& \text{Use the formula of general equation of the line to get the slope}(m)\\
\\
y &= mx + b
&& \text{Slope}(m) \text{ is the numerical coefficient of $x$}\\
\\
m &= \frac{1}{2}\\
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
y &= \frac{x-1}{x+1}\\
\\
y' &= \frac{(x+1) \frac{d}{dx} (x-1) - \left[ (x-1) \frac{d}{dx} (x+1) \right]}{(x+1)^2}
&& \text{Using Quotient Rule}\\
\\
y' &= \frac{(x+1)(1) - (x-1)(1)}{(x+1)^2}
&& \text{Simplify the equation}\\
\\
y' &= \frac{x+1-x+1}{(x+1)^2}
&& \text{Combine like terms}\\
\\
y' &= \frac{2}{(x+1)^2}
\end{aligned}
\end{equation}
$
Let $y'=$ slope$(m)$
$
\begin{equation}
\begin{aligned}
y' &= m = \frac{2}{(x+1)^2}
&& \text{Substitute value of slope}(m)\\
\\
\frac{1}{2} &= \frac{2}{(x+1)^2}
&& \text{Using cross multiplication}\\
\\
(x+1)^2 &= 4
&& \text{Take the square root of both sides}\\
\\
\sqrt{(x+1)^2} &= \pm \sqrt{4}
&& \text{Simplify the equation}\\
\\
x+1 &= \pm 2
&& \text{Solve for }x \\
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
x &= 2 -1 &&& x &= -2-1\\
x &= 1 &&& x &= -3
\end{aligned}
\end{equation}
$
Using the equation of the curve given,
@ $x= 1$
$
\begin{equation}
\begin{aligned}
y &= \frac{x-1}{x+1}
&& \text{Substitute the value of }x = 1\\
\\
y &= \frac{1-1}{1+1}
&& \text{Combine like terms}\\
\\
y &= \frac{0}{2}
&& \text{Simplify the equation}\\
\\
y &= 0
\end{aligned}
\end{equation}
$
@ $x=-3$
$
\begin{equation}
\begin{aligned}
y &= \frac{x-1}{x+1}
&& \text{Substitute the value of } x = -3\\
\\
y &= \frac{-3-1}{-3+1}
&& \text{Combine like terms}\\
\\
y &= \frac{-4}{-2}
&& \text{Simplify the equation}\\
\\
y &= 2
\end{aligned}
\end{equation}
$
Using point slope form to get the equations of the tangent line
@ $x=1$, $y=0$, $\displaystyle m = \frac{1}{2}$
$
\begin{equation}
\begin{aligned}
y - y_1 &= m(x-x_1)
&& \text{Substitute the value of } x,y \text{ and slope}(m)\\
\\
y - 0 &= \frac{1}{2} (x-1)
&& \text{Simplify the equation}
\end{aligned}
\end{equation}
$
The equation of the tangent line @ $x =1$, $y =0$ is $\displaystyle y = \frac{x-1}{2}$
@ $x = -3$, $y = 2$, $\displaystyle m = \frac{1}{2} $
$
\begin{equation}
\begin{aligned}
y -y_1 &= m(x-x_1)
&& \text{Substitute the value of } x,y \text{ and slope}(m)\\
\\
y - 2 & = \frac{1}{2} (x+3)
&& \text{Distribute } \frac{1}{2} \text{ in the equation}\\
\\
y - 2 & = \frac{x+3}{2}
&& \text{Transpose -2 to the right side}\\
\\
y & = \frac{x+3}{2} +2
&& \text{Get the LCD}\\
\\
y & = \frac{x+3+4}{2}
&& \text{Combine like terms}
\end{aligned}
\end{equation}
$
The equation of the tangent line @ $x=-3$, $y = 2$ is $\displaystyle y = \frac{x+7}{2}$
Wednesday, February 8, 2017
Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 76
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
No comments:
Post a Comment