Friday, February 3, 2017

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 26

Expand the expression $(1-x)^5$ using the Binomial Theorem
Recall that the Binomial Theorem is defined as

$
(a + b)^b =
\left(
\begin{array}{c}
n\\
0
\end{array}
\right)
a^n +
\left(
\begin{array}{c}
n\\
1
\end{array}
\right)
a^{n-1} b +
\left(
\begin{array}{c}
n\\
2
\end{array}
\right)
a^{n-2}b^2 +
...
\left(
\begin{array}{c}
n\\
n-1
\end{array}
\right)
ab^{n-1} +
\left(
\begin{array}{c}
n\\
n
\end{array}
\right)
b^n
$

Substituting $a = 1$ and $b = -x$ gives,

$
(1-x)^5 =
\left(
\begin{array}{c}
5\\
0
\end{array}
\right)
(1)^5 +
\left(
\begin{array}{c}
5\\
1
\end{array}
\right)
(1)^4 (-x) +
\left(
\begin{array}{c}
5\\
2
\end{array}
\right)
(1)^3(-x)^2 +
\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
(1)^2(-x)^3 +
\left(
\begin{array}{c}
5\\
4
\end{array}
\right)
(1)(-x)^4 +
\left(
\begin{array}{c}
5\\
5
\end{array}
\right)
(-x)^5
$

From the 5th row of the Pascal Triangle,

$
\left(
\begin{array}{c}
5\\
0
\end{array}
\right)
=1,
\quad
\left(
\begin{array}{c}
5\\
1
\end{array}
\right)
=5,
\quad
\left(
\begin{array}{c}
5\\
2
\end{array}
\right)
= 10,
\quad
\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
=10,
\quad
\left(
\begin{array}{c}
5\\
4
\end{array}
\right)
= 5,
\quad
\left(
\begin{array}{c}
5\\
5
\end{array}
\right)
=1
$

Thus,

$
\begin{equation}
\begin{aligned}
(1-x)^5 &= (1)(1)^5 + (5)(1)^4(-x) + (10)(1)^3(-x)^2+(10)(1)^2 (-x)^3+(5)(1)(-x)^4+(1)(-x)^5\\
\\
&= 1 - 5x + 10 x^2 - 10x^3 + 5x^4 - x^5
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...