Monday, February 6, 2017

College Algebra, Chapter 7, 7.1, Section 7.1, Problem 28

The system of linear equations

$
\left\{
\begin{equation}
\begin{aligned}

10x+10y-20z =& 60
\\
15x+20y+30z =& -25
\\
-5x+30y-10z =& 45

\end{aligned}
\end{equation}
\right.
$
has a unique solution.

We can rewrite the system in simplest form


$
\left\{
\begin{equation}
\begin{aligned}

x+y-2z =& 6
&& \frac{1}{10} \times \text{Equation 1}
\\
\\
3x + 4y + 6z =& -5
&& \frac{1}{5} \times \text{Equation 2}
\\
\\
-x + 6y - 2z =& 9
&& \frac{1}{5} \times \text{Equation 3}

\end{aligned}
\end{equation}
\right.
$


We use Gauss-Jordan Elimination

Augmented Matrix

$\left[ \begin{array}{cccc}
1 & 1 & -2 & 6 \\
3 & 4 & 6 & -5 \\
-1 & 6 & -2 & 9
\end{array} \right]$

$\displaystyle R_3 + R_1 \to R_3$


$\left[ \begin{array}{cccc}
1 & 1 & -2 & 6 \\
3 & 4 & 6 & -5 \\
0 & 7 & -4 & 15
\end{array} \right]$

$R_2 - 3R_1 \to R_2$

$\left[ \begin{array}{cccc}
1 & 1 & -2 & 6 \\
0 & 1 & 12 & -23 \\
0 & 7 & -4 & 15
\end{array} \right]$


$R_3 - 7R_2 \to R_3$

$\left[ \begin{array}{cccc}
1 & 1 & -2 & 6 \\
0 & 1 & 12 & -23 \\
0 & 0 & -88 & 176
\end{array} \right]$


$\displaystyle \frac{-1}{88} R_3$

$\left[ \begin{array}{cccc}
1 & 1 & -2 & 6 \\
0 & 1 & 12 & -23 \\
0 & 0 & 1 & -2
\end{array} \right]$


$\displaystyle R_1 - R_2 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & -14 & 29 \\
0 & 1 & 12 & -23 \\
0 & 0 & 1 & -2
\end{array} \right]$


$\displaystyle R_1 + 14R_3 \to R_1$

$\left[ \begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 12 & -23 \\
0 & 0 & 1 & -2
\end{array} \right]$


$\displaystyle R_2 - 12R_3 \to R_2$

$\left[ \begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -2
\end{array} \right]$


We now have an equivalent matrix in reduced row-echelon form and the corresponding system of equations is


$
\left\{
\begin{equation}
\begin{aligned}

x =& 1
\\
y =& 1
\\
z =& -2

\end{aligned}
\end{equation}
\right.
$


Hence we immediately arrive at the solution $(1,1,-2)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...