Monday, February 6, 2017

Calculus: Early Transcendentals, Chapter 6, 6.1, Section 6.1, Problem 31

int_0^(pi/2) (|sin(x)-cos(2x)|)dx
Since sin(x)-cos(2x)<=0,[0,pi/6]
and sin(x)-cos(2x)>=0,[pi/6,pi/2]
So, the integral can be split as,
=int_0^(pi/6)(-(sin(x)-cos(2x)))dx+int_(pi/6)^(pi/2)(sin(x)-cos(2x))dx
=int_0^(pi/6)(cos(2x)-sin(x))dx+int_(pi/6)^(pi/2)(sin(x)-cos(2x))dx
=[1/2sin(2x)+cos(x)]_0^(pi/6)+[-cos(x)-1/2sin(2x)]_(pi/6)^(pi/2)
=(1/2sin(pi/3)+cos(pi/6)-(1/2sin(0)+cos(0))+(-cos(pi/2)-1/2sin(pi))-(-cos(pi/6)-1/2sin(pi/3))
=(1/2*sqrt(3)/2+sqrt(3)/2)-(1)+(0)-(-sqrt(3)/2-1/2*sqrt(3)/2)
=(sqrt(3)/4+sqrt(3)/2-1+sqrt(3)/2+sqrt(3)/4)
=(3/2sqrt(3)-1)
~~1.598
Graph is attached. Integral is the sum of the region from (0 to pi/6) and (pi/6 to pi/2).

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...