Sunday, January 3, 2016

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 48

Find the first and second derivatives of $y = \sin^2(\pi t)$
Solving for the first derivative of the given function


$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dt} \left[ \sin^2 (\pi t) \right]\\
\\
y' &= \frac{d}{dt} \left[ \sin (\pi t) \right]^2\\
\\
y' &= 2[\sin(\pi t)] \cdot \frac{d}{dt} [\sin(\pi t)]\\
\\
y' &= 2 \sin (\pi t) \cos (\pi t) \cdot \frac{d}{dt} (\pi t) \\
\\
y' &= 2 \sin (\pi t) \cos (\pi t) (\pi) && \left( \text{Recall the Double Angle Formula } (\sin 2x = 2\sin x \cos x)\right)\\
\\
y' &= \pi \sin ( 2 \pi t)
\end{aligned}
\end{equation}
$


Solving for the second derivative of the given function

$
\begin{equation}
\begin{aligned}
y'' &= \frac{d}{dt} \left[ \pi \sin(2 \pi t) \right]\\
\\
y'' &= (\pi) \frac{d}{dt} [\sin (2\pi t)]\\
\\
y'' &= (\pi) \left[ \cos (2\pi t) \cdot \frac{d}{dt} (2\pi t) \right]\\
\\
y'' &= (\pi) \left[ \cos (2\pi t) \cdot 2\pi \frac{d}{dt}(t)\right]\\
\\
y'' &= (\pi) \left[ \cos (2\pi t)(2\pi) (1) \right]\\
\\
y'' &= (\pi) \left[ 2 \pi \cos(2 \pi t) \right]\\
\\
y'' &= 2 \pi^2 \cos ( 2 \pi t)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...