Wednesday, January 20, 2016

int_0^1 e^(-x^2) dx Use a power series to approximate the value of the integral with an error of less than 0.0001.

From the table of power series, we have:
e^x = sum_(n=0)^oo x^n/n!
     = 1+x+x^2/(2!)+x^3/(3!)+x^4/(4!)+x^5/(5!)+ ...
 To apply this on the given integral int_0^1 e^(-x^2)dx ,
we replace the "x " with "-x^2 ".
e^(-x^2)= sum_(n=0)^oo (-x^2)^n/(n!)  
          =sum_(n=0)^oo ((-1)^n*x^(2n))/(n!)
          = 1/(0!) -x^2/(1!)+x^4/(2!) - x^6/(3!) +x^8/4!-x^(10)/(5!)+x^(12)/(6!) -...
          = 1 -x^2 +x^4/2-x^6/6 +x^8/24-x^(10)/120+x^(12)/(6!)- ...
The integral becomes:
int_0^1 e^(-x^2)dx =int_0^1 [1 -x^2 +x^4/2-x^6/6 +x^8/24-x^(10)/120+x^(12)/720-...]dx
To determine the indefinite integral, we integrate each term using Power Rule for integration: int x^ndx =x^(n+1)/(n+1) .
int_0^1 [1 -x^2 +x^4/2-x^6/6 +x^8/24-x^(10)/120+x^(12)/720-...]dx
=[x-x^3/3 +x^5/(2*5)-x^7/(6*7) +x^9/(24*9)-x^(11)/(120*11)+x^(13)/(720*13)-...]|_0^1
=[x-x^3/3 +x^5/10-x^7/42+x^9/216-x^(11)/1320+x^(13)/9360-...]|_0^1
Apply definite integral formula: F(x)|_a^b = F(b) - F(a) .
F(1) = 1-1^3/3 +1^5/10-1^7/42+1^9/216-1^(11)/1320+1^(13)/9360- ...
         = 1 -1/3 +1/10-1/42 +1/216-1/1320+1/9360- ...
F(0) = 0-0^3/3 +0^5/10-0^7/42+0^9/216-0^(11)/1320+0^(13)/9360- ...
          = 0 -0 +0 -0 +0-0+0- ...      
All the terms are 0 then F(0)= 0 .
We can stop at 7th term (1/9360 ~~0.0001068) since we only need error less than 0.0001.
Then,
 F(1)-F(0)=[1 -1/3 +1/10-1/42 +1/216-1/1320+1/9360] -[0]
                      = 0.7468360343
Thus, the approximation of the integral will be:
int _0^1 e^(-x^2)dx ~~0.7468

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...