Tuesday, January 12, 2016

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 76

Suppose that the equation of motion of a particle is given by $s = A \cos (\omega t + \delta)$, the particle is said to undergo simple harmonic motion.

a.) Determine the velocity of the particle at time $t$.

Recall that velocity = $s'(t)$ so...


$
\begin{equation}
\begin{aligned}

\text{velocity } = s'(t) =& A \frac{d}{d(\omega t + \delta)} [\cos (\omega t + \delta)] \cdot \frac{d}{dt} (wt + \delta)
\\
\\
\text{velocity } = s'(t) =& A(- \sin (\omega t + \delta)) (\omega t + \delta)
\\
\\
\text{velocity } = s'(t) =& -A \omega \sin (\omega + \delta)

\end{aligned}
\end{equation}
$



b.) At what time is the velocity 0?

The velocity is zero when...


$
\begin{equation}
\begin{aligned}

0 =& - \cancel{A} \omega \sin (\omega t + \delta)
\\
\\
\omega t + \delta =& \sin^{-1} [0]
\\
\\
\omega t + \delta =& n \pi \qquad ; \text{where $n \pi$ corresponds to succeeding periods and $n$ is an integer}
\\
\\
\omega t =& n \pi - \delta
\\
\\
t =& \frac{n \pi - \delta}{\omega} \qquad ; \text{where $n$ is any integer}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...