Sunday, January 10, 2016

Calculus of a Single Variable, Chapter 8, 8.4, Section 8.4, Problem 20

Recall that indefinite integral follows the formula: int f(x) dx = F(x) +C
where: f(x) as the integrand
F(x) as the anti-derivative function
C as the arbitrary constant known as constant of integration
For the given problem int sqrt(5x^2-1) dx , it resembles one of the formula from integration table. We may apply the integral formula for function with roots as:
int sqrt(u^2+-a^2)du=1/2usqrt(u^2+-a^2)+-1/2a^2ln|u+sqrt(u^2+-a^2)| +C .
Take note the sign inside the root is "(-) " then we follow the formula as:
int sqrt(u^2-a^2)du=1/2usqrt(u^2-a^2)-1/2a^2ln|u+sqrt(u^2-a^2)| +C
By comparing "u^2-a^2 " with "5x^2-1 " , we determine the corresponding values as:
u^2=5x^2 or (sqrt(5)x)^2 then u =sqrt(5)x
a^2 =1 or 1^2 then a=1
For the derivative of u , we get du = sqrt(5) dx or (du)/sqrt(5) =dx .
Plug-in on the values u^2=5x^2 and (du)/sqrt(5) =dx on the integral problem, we get:
int sqrt(5x^2-1) dx=int sqrt(u^2-1) *(du)/sqrt(5)
Apply the basic properties of integration: int c*f(x) dx= c int f(x) dx .
int sqrt(u^2-1) *(du)/sqrt(5) =1/sqrt(5)int sqrt(u^2-1) du
Apply aforementioned integral formula for function with roots where a^2 =1 , we get:
1/sqrt(5)int sqrt(u^2-1) du=1/sqrt(5)*[1/2usqrt(u^2-1)-1/2*1*ln|u+sqrt(u^2-1)|] +C
=1/sqrt(5)*[1/2usqrt(u^2-1)-1/2ln|u+sqrt(u^2-1)|] +C
=1/(2sqrt(5))usqrt(u^2-1)-1/(2sqrt(5))ln|u+sqrt(u^2-1)|]+C
=(usqrt(u^2-1))/(2sqrt(5))- (ln|u+sqrt(u^2-1)|)/(2sqrt(5)) +C
Plug-in u^2=5x^2 and u =sqrt(5)x on (usqrt(u^2-1))/(2sqrt(5))- (ln|u+sqrt(u^2-1)|)/(2sqrt(5)) +C , we get the indefinite integral as:
int sqrt(5x^2-1) dx = (sqrt(5)xsqrt(5x^2-1))/(2sqrt(5))- (ln|sqrt(5)x+sqrt(5x^2-1)|)/(2sqrt(5)) +C
= (xsqrt(5x^2-1))/2- (ln|sqrt(5)x+sqrt(5x^2-1)|)/(2sqrt(5)) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...