Sunday, January 17, 2016

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 8

You need to use the substitution beta*t = u , such that:
beta*t = u => beta dt = du
Replacing the variable, yields:
int t^2*sin(beta*t) dt = 1/(beta^3) int u^2*sin u du
You need to use the integration by parts such that:
intfdg =fg - int gdf
f =u^2 => df = 2udu
dg =sin u=>g = -cos u
1/(beta^3)int u^2*sin u du = 1/(beta^3)(-u^2*cos u + 2int u*cos u du)
You need to use the integration by parts again, such that:
2int u*cos u du = 2u*sin u - 2int sin u du
f =u => df = du
dg =cos u=>g = sin u
2int u*cos u du = 2u*sin u + 2cos u + c
1/(beta^3)int u^2*sin u du = 1/(beta^3)(-u^2*cos u + 2u*sin u + 2cos u) + c
Replacing back the variable, yields:
int t^2*sin(beta*t) dt = 1/(beta^3)(-(beta*t)^2*cos(beta*t) + 2(beta*t)*sin(beta*t) + 2cos (beta*t)) + c
Hence, evaluating the integral, using substitution, then integration by parts, yields int t^2*sin(beta*t) dt = 1/(beta^3)(-(beta*t)^2*cos(beta*t) + 2(beta*t)*sin(beta*t) + 2cos (beta*t)) + c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...