Monday, January 25, 2016

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 10

a.) Determine what is wrong in the equation $\displaystyle \frac{x^2+x-6}{x-2} = x+3$

The function in the left side is defined for all values of $x$ except for $x=2$. However, the function on the right side is
on every values of $x$

b.) Prove that the equations $\lim\limits_{x \rightarrow 2} \displaystyle \frac{x^2+x-6}{x-2} = \lim\limits_{x \rightarrow 2} (x+3)$ is correct.


$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \displaystyle \frac{x^2+x-6}{x-2} & = \lim\limits_{x \rightarrow 2} \displaystyle \frac{(x+3)\cancel{(x-2)}}{\cancel{x-2}} & & \text{(By Factoring)}\\
\lim\limits_{x \rightarrow 2} \displaystyle \frac{x^2+x-6}{x-2} & = \lim\limits_{x \rightarrow 2} \displaystyle (x+3)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...