Wednesday, January 20, 2016

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 17

Show that $\displaystyle \frac{d}{dx} (\csc x) = - \csc x \cot x $

Get the reciprocal of $\csc x$

$\csc x = \displaystyle \frac{1}{\sin x}$

Use the Quotient Rule to derive $\displaystyle \frac{1}{\sin x}$


$
\begin{equation}
\begin{aligned}


\frac{d}{dx} (\csc x) =& \frac{\displaystyle \sin x \frac{d}{dx} (1) - \left[ 1 \frac{d}{dx} (\sin x) \right]}{(\sin x)^2}
&& \text{}
\\
\\
\frac{d}{dx} (\csc x) =& \frac{\sin x (0) - (\cos x)}{\sin ^2 x }
&& \text{Simplify the equation}
\\
\\
\frac{d}{dx} (\csc x) =& \frac{- \cos x}{\sin ^2 x}
&& \text{Factor out $\displaystyle \frac{-1}{\sin x}$ and $\displaystyle \frac{\cos x}{\sin x}$}
\\
\\
\frac{d}{dx} (\csc x) =& - \left( \frac{1}{\sin x} \right) \left( \frac{\cos x}{\sin x}\right)
&& \text{Get their identities}
\\
\\
\frac{d}{dx} (\csc x) =& - \csc x \cot x
&& \text{}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...