Thursday, January 21, 2016

f(x)=sin(3x) ,c=0 Use the definition of Taylor series to find the Taylor series, centered at c for the function.

Taylor series is an example of infinite series derived from the expansion of f(x) about a single point. It is represented by infinite sum of f^n(x) centered at x=c . The general formula for Taylor series is:
f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n
or
f(x) =f(c)+f'(c)(x-c) +(f^2(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f^4(c))/(4!)(x-c)^4 +...
To apply the definition of Taylor series for the given function f(x) = sin(3x) , we list f^n(x) using  the derivative formula for trigonometric function: d/(dx) sin(u) = cos(u) *(du)/(dx) and d/(dx) cos(u)= -sin(u)*(du)/(dx) .
Let u = 3x then (du)/(dx) =3 .
f(x) =sin(3x)
f'(x) = d/(dx) sin(3x)
           = cos(3x)*3
           =3cos(3x)
f^2(x) = d/(dx) 3cos(3x)
            =3 d/(dx) cos(3x)
            =3*( -sin(3x)*3)
            =-9sin(3x)
f^3(x) = d/(dx)-9sin(3x)
            = -9 d/(dx)sin(3x)
             =-9 * cos(3x)*3
           = -27cos(3x)
f^4(x) = d/(dx) -27cos(3x)
            =-27*d/(dx) cos(3x)
            = -27 * (-sin(3x)*3)
            =81 sin(3x)
 f^5(x) = d/(dx) 81sin(3x)
            =81*d/(dx) sin(3x)
            = 81* (cos(3x)*3)
            =243cos(3x)
 Plug-in x=0 on each f^n(x) , we get:
 f(0) =sin(3*0)
         =sin(0)
         =0
 f'(0)= 3cos(3*0)
           =3cos(0)
           = 3*1
           =3  
 f^2(0)= -9sin(3*0)
           =-9sin(0)
            =-9 *0
            =0
 f^3(0)= -27cos(3*0)
            =-27 cos(0)
             =-27*1
            =-27
 f^4(0)= 81sin(3*0)
            =81sin(0)
            =81*0
             =0
 f^5(0)= 243cos(3*0)
            =243cos(0)
             =243*1
             =243
 Plug-in the values on the formula for Taylor series, we get:
 sin(3x) = sum_(n=0)^oo (f^n(0))/(n!) (x-0)^n
 =sum_(n=0)^oo (f^n(0))/(n!) x^n
 =f(0)+f'(0)x +(f'^2(0))/(2!)x^2 +(f^3(0))/(3!)x^3 +(f^4(0))/(4!)x^4 +(f^4(0))/(4!)x^4 +...
=0+3x +0/(2!)x^2 +(-27)/(3!)x^3 + 0/(4!)x^4 +243/(5!)x^5+...
=0+3x +0/2x^2 +(-27)/6x^3 + 0/24x^4 +243/120x^5+...
=0+3x +0 -9/2x^3 + 0 +81/40x^5+...
=3x -9/2x^3 +81/40x^5+...
The Taylor series for the given function f(x)=sin(3x) centered at c=0 will be:
sin(3x) =3x -9/2x^3 +81/40x^5+...

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...