Find the complete solution of the system
$
\left\{
\begin{array}{ccccc}
3x & + y & & = & 2 \\
-4x & + 3y & + z & = & 4 \\
2x & + 5y & + z & = & 0
\end{array}
\right.
$
We transform the system into row-echelon form
$\left[ \begin{array}{cccc}
3 & 1 & 0 & 2 \\
-4 & 3 & 1 & 4 \\
2 & 5 & 1 & 0
\end{array} \right]$
$\displaystyle \frac{1}{3} R_1$
$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{3} & 0 & \displaystyle \frac{2}{3} \\
-4 & 3 & 1 & 4 \\
2 & 5 & 1 & 0
\end{array} \right]$
$\displaystyle R_2 + 4 R_1 \to R_2$
$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{3} & 0 & \displaystyle \frac{2}{3} \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{20}{3} \\
2 & 5 & 1 & 0
\end{array} \right]$
$\displaystyle R_3 - 2 R_1 \to R_3$
$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{3} & 0 & \displaystyle \frac{2}{3} \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{20}{3} \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{-4}{3}
\end{array} \right]$
$\displaystyle \frac{3}{13} R_2$
$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{3} & 0 & \displaystyle \frac{2}{3} \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{20}{13} \\
0 & \displaystyle \frac{13}{3} & 1 & \displaystyle \frac{-4}{3}
\end{array} \right]$
$\displaystyle R_3 - \frac{13}{3} R_2 \to R_3$
$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{3} & 0 & \displaystyle \frac{2}{3} \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{20}{13} \\
0 & 0 & 0 & -8
\end{array} \right]$
$\displaystyle \frac{-1}{8} R_3$
$\left[ \begin{array}{cccc}
1 & \displaystyle \frac{1}{3} & 0 & \displaystyle \frac{2}{3} \\
0 & 1 & \displaystyle \frac{3}{13} & \displaystyle \frac{20}{13} \\
0 & 0 & 0 & 1
\end{array} \right]$
This last matrix is in row-echelon form, so we stop the Gaussian Elimination Process. Now if we translate the last row back into equation form, we get $0x + 0y + 0z = 1$ or $0 = 1$, which is false. This means that the system has no solution or it is inconsistent.
Friday, January 22, 2016
College Algebra, Chapter 7, 7.1, Section 7.1, Problem 44
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Resourceful: Phileas Fogg doesn't let unexpected obstacles deter him. For example, when the railroad tracks all of a sudden end in India...
-
Friar Lawrence plays a significant role in Romeo and Juliet's fate and is responsible not only for secretly marrying the two lovers but ...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Use transformation to illustrate the graph of the function $\displaystyle f(x) = \left\{ \begin{array}{c} -x & \rm{if} & x \\ e^...
-
Abraham and Moses are fundamental figures in both Judaism and Christianity. They each played an integral role in the development of these re...
No comments:
Post a Comment