Thursday, September 10, 2015

int 1/(x^2+4x+8) dx Use integration tables to find the indefinite integral.

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
          F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
The format of the given integral problem: int 1/(x^2+4x+8)dx resembles one of the formulas from integration table. Recall we have indefinite integration formula for rational function as: 
int 1/(ax^2+bx+c) dx = 2/sqrt(4ac-b^2)arctan((2ax+b)/sqrt(4ac-b^2)) +C
By comparing ax^2 +bx +c with x^2+4x+8 , we determine that a=1 , b=4, and c=8 .
Applying indefinite integration formula for rational function, we get:
int 1/(x^2+4x+8)dx =2/sqrt(4(1)(8)-(4)^2)arctan((2(1)x+(4))/sqrt(4(1)(8)-(4)^2)) +C
=2/sqrt(32-16)arctan((2x+4)/sqrt(32-16)) +C
=2/sqrt(16)arctan((2x+4)/sqrt(16)) +C
=2/4 arctan((2x+4)/4) +C
=2/4 arctan(((2)(x+2))/4) +C
=1/2 arctan((x+2)/2) +C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...