Saturday, September 12, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 56

Determine $\displaystyle \int \sin x \cos x dx$ by four methods.
a.) The substitution $u = \cos x$
If $ u = \cos x$, then $du = -\sin xdx$, so $\sin xdx = - du$. Thus,

$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \int u \cdot - du\\
\\
\int \sin x \cos x dx &= - \int u du\\
\\
\int \sin x \cos x dx &= -\left( \frac{u^{1+1}}{1+1} \right) + c\\
\\
\int \sin x \cos x dx &= \frac{-u^2}{2} + c \\
\\
\int \sin x \cos x dx &= -\frac{(\cos x)^2}{2} + c\\
\\
\int \sin x \cos x dx &= -\frac{\cos^2 x }{2} + c
\end{aligned}
\end{equation}
$


b.) The substitution $u = \sin x$
If $u = \sin x$, then $du = \cos xdx$. Thus,

$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \int u du \\
\\
\int \sin x \cos x dx &= \frac{u^{1+1}}{1+1} + c\\
\\
\int \sin x \cos x dx &= \frac{u^2}{2} + c\\
\\
\int \sin x \cos x dx &= \frac{(\sin x)^2}{2} + c\\
\\
\int \sin x \cos x dx &= \frac{\sin^2 x}{2} + c
\end{aligned}
\end{equation}
$


c.) The identity $\sin 2x = 2 \sin x \cos x$
Using the identity $\sin 2x = 2 \sin x \cos x$,

$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \int \frac{\sin 2x}{2} dx\\
\\
\int \sin x \cos x dx &= \frac{1}{2} \int \sin 2x dx
\end{aligned}
\end{equation}
$

Let $u = 2x$, then $du = 2 dx$, so $\displaystyle dx = \frac{du}{2}$. Thus,

$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= \frac{1}{2} \int \sin u \cdot \frac{du}{2}\\
\\
\int \sin x \cos x dx &= \frac{1}{4} \int \sin u du\\
\\
\int \sin x \cos x dx &= \frac{1}{4} (- \cos u) + c\\
\\
\int \sin x \cos x dx &= \frac{-1}{4} \cos u + c\\
\\
\int \sin x \cos x dx &= \frac{-1}{4} \cos 2 x + c
\end{aligned}
\end{equation}
$


d.) Integration by parts
Let $u = \sin x$, then $du = \cos x dx$ and $v = \sin x$, then $dv = \cos x dx$

$
\begin{equation}
\begin{aligned}
\int \sin x \cos x dx &= uv - \int v du\\
\\
\int \sin x \cos x dx &= \sin x \sin x - \int \sin x \cos x dx\\
\\
\int \sin x \cos x dx &= \sin^2 x - \int \sin x \cos x dx && \text{Combine Like Terms}\\
\\
\int \sin x \cos x dx + \int \sin x \cos x dx &= \sin^2 x\\
\\
2 \int \sin x \cos x dx &= \sin^2 x\\
\\
\int \sin x \cos x dx &= \frac{\sin^2 x}{2} + c
\end{aligned}
\end{equation}
$

Explain the different appearances of the answers.
Although the answers have different appearances, if we simplify each answer by using trigonometric identities, it will have the same result.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...