Thursday, September 17, 2015

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 48

Determine the equation of the tangent line to the curve $\displaystyle y = \frac{x^2-1}{x^2+1}$ at the point $(0,-1)$

Solving for the slope, where $y' =m$

$
\begin{equation}
\begin{aligned}
y' = m &= \frac{d}{dx} \left( \frac{x^2-1}{x^2+1} \right) \\
\\
m &= \frac{(x^2+1)\frac{d}{dx}(x^2-1)-(x^2-1)\frac{d}{dx}(x^2+1) }{(x^2+1)^2}\\
\\
m &= \frac{(x^2+1)(2x)-(x^2-1)(2x)}{(x^2+1)^2}\\
\\
m &= \frac{\cancel{2x^3} + 2x - \cancel{2x^3} + 2x }{(x^2+1)}\\
\\
m &= \frac{4x}{(x^2+1)^2}\\
\\
m &= \frac{4(0)}{(0^2+1)^2}\\
\\
m &= \frac{0}{1}\\
\\
m &= 0
\end{aligned}
\end{equation}
$


Using point slope form


$
\begin{equation}
\begin{aligned}
y - y_1 &= m(x-x_1)\\
\\
y - (-1) &= 0(x-0)\\
\\
y + 1 &= 0 \\
\\
y &= -1 && \Longleftarrow \text{(Equation of the tangent line to the curve at (0,-1))}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...