Monday, September 21, 2015

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 19

Evaluate the function $\displaystyle \lim \limits_{x \to 0} \frac{\sin x}{x + \tan x} $ at the given
numbers $ x = \pm 1, \pm 0.5, \pm 0.2, \pm 0.1, \pm 0.05, \pm 0.01 $ and guess the value of the limit, if it exists.

Substitute the given values of $x$


$
\begin{equation}
\begin{aligned}

\begin{array}{|c|c|}
\hline\\
x & f(x) \\
\hline\\
1 & 0.329033 \\
0.5 & 0.458209 \\
0.2 & 0.493331 \\
0.1 & 0.498333 \\
0.05 & 0.499583 \\
0.01 & 0.499983 \\
-0.01 & 0.499983 \\
-0.05 & 0.499583 \\
-0.1 & 0.498333 \\
-0.2 & 0.493331 \\
-0.5 & 0.458209 \\
-1 & 0.329033\\
\hline

\end{array}


\end{aligned}
\end{equation}
$


The table shows that as $x$ approaches 0 from left and right, the limit approaches a value of $\displaystyle \frac{1}{2}$
.


$\displaystyle \lim \limits_{x \to 0} \frac{\sin x}{x + \tan x} = \frac{\sin (0.000001)}{0.000001 + \tan (0.000001)} = \frac{1}{2}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...