Monday, September 14, 2015

College Algebra, Chapter 3, 3.1, Section 3.1, Problem 74

Suppose the brightness $x$ of a light source is increased, the eye reacts by decreasing the radius $R$ of the pupil. The dependence of $R$ on $x$ is given by the function
$\displaystyle R(x) = \sqrt{\frac{13+7x^{0.4}}{1 + 4x^{0.4}}}$
a.) Find $R(1), R(10)$ and $R(100)$
For $R(1)$,

$
\begin{equation}
\begin{aligned}
R(1) &= \sqrt{\frac{13+7(1)^{0.4}}{1 + 4(1)^{0.4}}}\\
\\
&= 2
\end{aligned}
\end{equation}
$


For $R(10)$,

$
\begin{equation}
\begin{aligned}
R(10) &= \sqrt{\frac{13+7(10)^{0.4}}{1 + 4(10)^{0.4}}}\\
\\
&= 1.66
\end{aligned}
\end{equation}
$

For $R(100)$,

$
\begin{equation}
\begin{aligned}
R(10) &= \sqrt{\frac{13+7(100)^{0.4}}{1 + 4(100)^{0.4}}}\\
\\
&= 1.48
\end{aligned}
\end{equation}
$


b.) Make a table of values of $R(x)$

$
\begin{array}{|c|c|}
\hline\\
x & R(x)\\
\hline\\
1 & 2 \\
\\
10 & 1.66\\
\\
100 & 1.48\\
\\
1000 & 1.39\\
\\
10000 & 1.35\\
\\
\hline
\end{array}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...