Thursday, September 24, 2015

Calculus and Its Applications, Chapter 1, 1.2, Section 1.2, Problem 26

Determine the $\displaystyle \lim_{x \to -4^-} \sqrt{x^2 - 16}$ by using the Limit Principles.
If the limit does not exist, state the fact.


$
\begin{equation}
\begin{aligned}
\lim_{x \to -4^-} \sqrt{x^2 - 16} &= \sqrt{\lim_{x \to -4^-} (x^2 - 16)}
&& \text{The limit of a root is the root of the limit}\\
\\
&= \sqrt{\lim_{x \to -4^-} x^2 - \lim_{x \to -4^-} 16}
&& \text{The limit of a difference is the difference of the limits}\\
\\
&= \sqrt{\left(\lim_{x \to -4^-} x \right)^2 - \lim_{x \to -4^-} 16}
&& \text{The limit of a power is the power of the limit}\\
\\
&= \sqrt{\left(\lim_{x \to -4^-} x \right)^2 - 16}
&& \text{The limit of a constant is the constant}\\
\\
&= \sqrt{(-4)^2 -16}
&& \text{Substitute }-4\\
\\
&= \sqrt{16 - 16}\\
\\
&= 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...