Wednesday, September 23, 2015

int cos^2(3x) dx Find the indefinite integral

Recall  that indefinite integral follows int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration..
 For the given integral problem: int cos^2(3x) dx , we can evaluate this by using a trigonometric identity. Recall that:
cos^2(theta) = (1 + cos(2theta))/2 .
Applying the trigonometric identity, we get:
int cos^2(3x) dx = int (1 + cos(2* 3x))/2 dx
                              = int ( 1 + cos(6x))/2dx
                              =int ( 1/2 + cos(6x)/2)dx
                        
Apply the basic integration property: : int (u+v) dx = int (u) dx + int (v) dx .
int ( 1/2) + cos(6x)/2)dx =int ( 1/2) dx + int cos(6x)/2dx
For the first integral: int (1/2) dx , we may apply basic integration property: int c dx = cx .
int (1/2) dx = 1/2x or x/2
For the second integral:  int cos(6x)/2dx , we  may apply basic integration property: int c f(x) dx = c int f(x) dx .
1/2 int cos(6x) dx .
Apply u-substitution by letting u = 6x then du = 6 dx or (du)/6 = dx .
1/2 int cos(6x) dx = 1/2 int cos(u) * (du)/6
                               = 1/2*1/6 int cos(u) du
                               = 1/12 sin(u)  
Plug-in u = 6x on 1/12sin(u) , we get:
1/2 int cos(6x) dx = 1/12 sin(6x) or sin(6x)/12
Combining the results, we get the indefinite integral as:
int cos^2(3x) dx = x/2 + sin(6x)/12+C
 

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...