Monday, September 28, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 44

Determine the integral cos(πx)cos(4πx)dx

Let u=πx, then du=πdx, so dx=duπ. Thus


cos(πx)cos(4πx)dx=cosucos4uduπApply Trigonometric Identity cosAcosB=12[cos(AB)+cos(A+B)]cos(πx)cos(4πx)dx=1π12[cos(u4u)+cos(u+4u)]ducos(πx)cos(4πx)dx=12π[cos(3u)+cos(5u)]duApply Even-Odd Identity cos(u)=cos(u)cos(πx)cos(4πx)dx=12π[cos(3u)+cos(5u)]ducos(πx)cos(4πx)dx=12π[cos(3u)du+12πcos(5u)du


For cos(3u), let v=3u, then dv=3du, so du=dv3 and for cos(5u), let w=5u, then dw=5du, so du=dw5. Therefore,


12π[cos(3u)du+12πcos(5u)du=12πcosvdv3+12πcoswdw512π[cos(3u)du+12πcos(5u)du=16πcosvdv+110πcoswdw12π[cos(3u)du+12πcos(5u)du=16πsinv+110πsinw+c12π[cos(3u)du+12πcos(5u)du=sin3u6π+sin5u10π+c12π[cos(3u)du+12πcos(5u)du=sin(3πx)6π+sin(5πx)10π+c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...