Monday, September 28, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 44

Determine the integral $\displaystyle \int \cos (\pi x) \cos (4 \pi x) dx$

Let $u = \pi x$, then $du = \pi dx$, so $\displaystyle dx = \frac{du}{\pi}$. Thus


$
\begin{equation}
\begin{aligned}

\int \cos (\pi x) \cos (4 \pi x) dx =& \int \cos u \cos 4 u \cdot \frac{du}{\pi}
&& \text{Apply Trigonometric Identity } \cos A \cos B = \frac{1}{2} [\cos (A - B) + \cos(A + B)]
\\
\\
\int \cos (\pi x) \cos (4 \pi x) dx =& \frac{1}{\pi} \int \frac{1}{2} [\cos (u - 4u) + \cos (u + 4u)] du
&&
\\
\\
\int \cos (\pi x) \cos (4 \pi x) dx =& \frac{1}{2 \pi} \int [\cos (-3u) + \cos (5u)] du
&& \text{Apply Even-Odd Identity } \cos (-u) = \cos (u)
\\
\\
\int \cos (\pi x) \cos (4 \pi x) dx =& \frac{1}{2 \pi} \int [\cos (3u) + \cos (5u)] du
\\
\\
\int \cos (\pi x) \cos (4 \pi x) dx =& \frac{1}{2 \pi} \int [\cos (3u) du + \frac{1}{2 \pi} \int \cos (5u) du

\end{aligned}
\end{equation}
$


For $\cos (3u)$, let $v = 3u$, then $dv = 3du$, so $\displaystyle du = \frac{dv}{3}$ and for $\cos (5u)$, let $w = 5u$, then $dw = 5du$, so $\displaystyle du = \frac{dw}{5}$. Therefore,


$
\begin{equation}
\begin{aligned}

\frac{1}{2 \pi} \int [\cos (3u) du + \frac{1}{2 \pi} \int \cos (5u) du =& \frac{1}{2 \pi} \int \cos v \cdot \frac{dv}{3} + \frac{1}{2 \pi} \int \cos w \cdot \frac{dw}{5}
\\
\\
\frac{1}{2 \pi} \int [\cos (3u) du + \frac{1}{2 \pi} \int \cos (5u) du =& \frac{1}{6 \pi} \int \cos v dv + \frac{1}{10 \pi} \int \cos w dw
\\
\\
\frac{1}{2 \pi} \int [\cos (3u) du + \frac{1}{2 \pi} \int \cos (5u) du =& \frac{1}{6 \pi} \sin v + \frac{1}{10 \pi} \sin w + c
\\
\\
\frac{1}{2 \pi} \int [\cos (3u) du + \frac{1}{2 \pi} \int \cos (5u) du =& \frac{\sin 3 u}{6 \pi} + \frac{\sin 5 u}{10 \pi} + c
\\
\\
\frac{1}{2 \pi} \int [\cos (3u) du + \frac{1}{2 \pi} \int \cos (5u) du =& \frac{\sin (3 \pi x)}{6 \pi} + \frac{\sin (5 \pi x)}{10 \pi} + c

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...