Sunday, September 13, 2015

College Algebra, Chapter 5, 5.4, Section 5.4, Problem 80

$v(t) = 80(1 - e^{-0.2t})$ represents the velocity of a sky diver t seconds after jumping. Determine how many seconds will it take so that the velocity will be 70 ft/s?

If $v = 70$, then


$
\begin{equation}
\begin{aligned}

70 =& 80 \left( 1 - e^{-0.2t} \right)
&& \text{Divide } 80
\\
\\
\frac{70}{80} =& \left( 1 - e^{-0.2t} \right)
&& \text{Add $e^{-0.2t}$ and subtract } \frac{70}{80}
\\
\\
e^{-0.2t} =& 1 - \frac{7}{8}
&& \text{Take $\ln$ of both sides}
\\
\\
-0.2t =& \ln \left(1 - \frac{7}{8} \right)
&& \text{Solve for } t
\\
\\
t =& 10.40 s
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...