Thursday, September 3, 2015

College Algebra, Chapter 7, 7.1, Section 7.1, Problem 30

State whether the system of linear equations $\left\{ \begin{array}{ccccc}
x & & + 3z & = & 3 \\
2x & + y & - 2z & = & 5 \\
& - y & + 8z & = & 8
\end{array} \right.$ is inconsistent or dependent. If it is dependent, find the complete solution.

We transform the system into row-echelon form.

$\left[ \begin{array}{cccc}
1 & 0 & 3 & 3 \\
2 & 1 & -2 & 5 \\
0 & -1 & 8 & 8
\end{array} \right]$

$R_2 - 2R_1 \to R_2$

$\left[ \begin{array}{cccc}
1 & 0 & 3 & 3 \\
0 & 1 & -8 & -1 \\
0 & -1 & 8 & 8
\end{array} \right]$

$R_3 + R_2 \to R_3$

$\left[ \begin{array}{cccc}
1 & 0 & 3 & 3 \\
0 & 1 & -8 & -1 \\
0 & 0 & 0 & 7
\end{array} \right]$

$\displaystyle \frac{1}{7} R_3$

$\left[ \begin{array}{cccc}
1 & 0 & 3 & 3 \\
0 & 1 & -8 & -1 \\
0 & 0 & 0 & 1
\end{array} \right]$

This last matrix is in row-echelon form, so we can stop the Gaussian Elimination process. Now if we translate the last row back into equation form, we get $0x + 0y + 0z = 1$, or $0 = 1$, which is false. This means that the system is inconsistent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...