Monday, November 3, 2014

Precalculus, Chapter 7, 7.4, Section 7.4, Problem 36

x^2/(x^4-2x^2-8)
Let's factorize the denominator,
x^4-2x^2-8=x^4-4x^2+2x^2-8
=x^2(x^2-4)+2(x^2-4)
=(x^2+2)(x^2-4)
=(x^2+2)(x+2)(x-2)
:.x^2/(x^4-2x^2-8)=x^2/((x+2)(x-2)(x^2+2))
Let x^2/((x+2)(x-2)(x^2+2))=A/(x+2)+B/(x-2)+(Cx+D)/(x^2+2)
=(A(x-2)(x^2+2)+B(x+2)(x^2+2)+(Cx+D)(x+2)(x-2))/((x+2)(x-2)(x^2+2))
=(A(x^3+2x-2x^2-4)+B(x^3+2x+2x^2+4)+(Cx+D)(x^2-4))/((x+2)(x-2)(x^2+2))
=(A(x^3-2x^2+2x-4)+B(x^3+2x^2+2x+4)+Cx^3-4Cx+Dx^2-4D)/((x+2)(x-2)(x^2+2))
=(x^3(A+B+C)+x^2(-2A+2B+D)+x(2A+2B-4C)-4A+4B-4D)/((x+2)(x-2)(x^2+2))
Now,
x^2=x^3(A+B+C)+x^2(-2A+2B+D)+x(2A+2B-4C)-4A+4B-4D
Equating the coefficients of like terms,
A+B+C=0 --- equation 1
-2A+2B+D=1 ------ equation 2
2A+2B-4C=0 ------ equation 3
-4A+4B-4D=0 ----- equation 4
Now we have to solve the above four equations to find the solutions of A,B,C and D.
Rewrite equation 1 ,
A+B=-C
Substitute above in equation 3,
2(A+B)-4C=0
2(-C)-4C=0
-2C-4C=0
-6C=0
C=0
Rewrite equation 2 as,
-2A+2B=1-D
Substitute the above in equation 4,
-4A+4B-4D=0
2(-2A+2B)-4D=0
2(1-D)-4D=0
2-2D-4D=0
2-6D=0
D=2/6
D=1/3
Plug the values of C in equation 3 ,
2A+2B-4(0)=0
2A+2B=0
2(A+B)=0
A+B=0 ------ equation 5
Plug the value of D in equation 4,
-4A+4B-4(1/3)=0
-4A+4B=4/3
4(-A+B)=4/3
-A+B=1/3 ---- equation 6
Solve equations 5 and 6 to find the solutions of A and B,
Add the equations 5 and 6.
2B=1/3
B=1/6
Plug the value of B in equation 5,
A+1/6=0
A=-1/6
:.x^2/(x^4-2x^2-8)=(-1/6)/(x+2)+(1/6)/(x-2)+(0*x+1/3)/(x^2+2)
x^2/(x^4-2x^2-8)=-1/(6(x+2))+1/(6(x-2))+1/(3(x^2+2))

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...