Saturday, November 29, 2014

Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 22

Use the guidelines of curve sketching to sketch the curve. $\displaystyle y = \sqrt{x^2+x} -x $

The guidelines of Curve Sketching
A. Domain.
We know that $f(x)$ contains square root function that is defined only for positive values of $x$. Hence, $x^2 + x \geq 0 \Longrightarrow x(x+1) \Longrightarrow x \geq 0$ or $x \leq -1$. Therefore, the domain is $(-\infty, -1]\bigcup[0, \infty)$

B. Intercepts.
Solving for $y$-intercept, when $x=0$,
$y = \sqrt{0^2 + 0} - 0 = 0$
Solving for $x$-intercept, when $y=0$

$
\begin{equation}
\begin{aligned}
0 & = \sqrt{x^2 + x } - x\\
\\
\sqrt{x^2+x} &= x\\
\\
x^2 + x & = x^2\\
\\
x &= 0
\end{aligned}
\end{equation}
$



C. Symmetry.
The function is not symmetric to either $y$-axis or origin by using symmetry test.


D. Asymptotes.
The function has no vertical asymptotes
For the horizontal asymptotes

$
\begin{equation}
\begin{aligned}
\lim_{x \to \pm\infty} \left(\sqrt{x^2+x} - x \right) &= \lim_{x \to \pm\infty} \left( \sqrt{x^2+x} - x \right) \cdot \left( \frac{\sqrt{x^2+x}+x}{\sqrt{x^2+x}+x} \right) && \Longleftarrow \text{(By multiplying the conjugate)}\\
\\
&= \lim_{x \to \pm\infty}\frac{x^2 + x - x^2}{\sqrt{x^2 + x} +x }\\
\\
&= \lim_{x \to \pm\infty} \frac{x}{\sqrt{x^2+x}+x} && \Longleftarrow \left(\text{by dividing to } \frac{1}{x}\right)\\
\\
&= \lim_{x \to \pm\infty}\frac{1}{\sqrt{1 + \frac{1}{x} }} + 1\\
\\
&= \frac{1}{2}
\end{aligned}
\end{equation}
$

Therefore, the horizontal asymptote is $\displaystyle y = \frac{1}{2}$

E. Intervals of Increase or Decrease.
If we take the derivative of $f(x)$, By using Chain Rule,

$
\begin{equation}
\begin{aligned}
y' &= \frac{1}{2} (x^2 + x)^{\frac{-1}{2}} (1x+1) -1 \\
\\
y' &= \frac{2x+1}{2\sqrt{x^2 + x}} - 1
\end{aligned}
\end{equation}
$

When $y' = 0$,
$\displaystyle 0 = \frac{2x+1}{2(x^2+x)^{\frac{1}{2}}} -1$
We don't have critical numbers.

So the intervals of increase or decrease are...

$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f'(x) & f\\
\hline\\
x < -1 & - & \text{decreasing on } (-\infty, -1)\\
\hline\\
x > 0 & + & \text{increasing on } (0, \infty)\\
\hline
\end{array}
$



F. Local Maximum and Minimum Values.
We have no local maximum and minimum.

G. Concavity and Points of Inflection.

$
\begin{equation}
\begin{aligned}
\text{if } f'(x) &= \frac{2x+1}{2\sqrt{x^2 + x }} - 1 \qquad \text{, then by using Quotient Rule and Chain Rule,}\\
\\
f''(x) &= \frac{(2\sqrt{x^2+x})(2) - (2x+1)\left(2 \left( \frac{2x+1}{2\sqrt{x^2+x}}\right) \right) }{(2\sqrt{x^2+x})^2}\\
\\
f''(x) &= \frac{4\sqrt{x^2 + x} - \frac{(2x+1)^2}{\sqrt{x^2+x}} }{(2\sqrt{x^2+x})^2} = \frac{\frac{4x^2+4x-4x^2-4x-1}{\sqrt{x^2+x}}}{4(x^2+x)}\\
\\
f''(x) &= \frac{-1}{4(x^2+)^{\frac{3}{2}}}
\end{aligned}
\end{equation}
$


when $f''(x) = 0$
$\displaystyle 0 = \frac{-1}{4(x^2+x)^{\frac{3}{2}}}$
$f''(x) = 0$ does not exist. Therefore, we don't have inflection point.
Thus, the concavity in the domain of $f$ is...


$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f''(x) & \text{Concavity}\\
\hline\\
x < -1 & - & \text{Downward}\\
\hline\\
x > 0 & - & \text{Downward}\\
\hline
\end{array}
$


H. Sketch the Graph.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...