Sunday, November 9, 2014

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 32

(a) Estimate the value of $\displaystyle \lim \limits_{x \to 0} \frac{\sqrt{3+x}-\sqrt{3}}{x}$ by using the graph of $f(x)$






Based on the graph, the limit of $f(x)$ seems to have a value of 0.29 as $x$ approaches 0.

(b) Guess the limit the limit by using a table of values of $f(x)$


$\begin{array}{|c|c|c|c|c|}
\hline\\
x & 0.01 & 0.02 & 0.03 & 0.04 \\ \hline
f(x) & 0.2884 & 0.2882 & 0.2879 & 0.2877\\
\hline
\end{array} $

Based on the values from the table, the limit of the function seems to have a value of 0.29 as $x$ approaches to 0.

(c) Find the exact value of the limit using the limit laws.


$
\begin{equation}
\begin{aligned}

& \lim\limits_{x \to 0} \frac{\sqrt{3 + x} - \sqrt{3}}{x}
\cdot
\frac{\sqrt{3 + x} + \sqrt{3}}
{\sqrt{3 + x} + \sqrt{3}}
= \lim \limits_{x \to 0} \frac{3 + x - 3}{ x( \sqrt{3 + x} + \sqrt{3} ) }
&& \text{ Simplify the equation by multiplying both numerator and denominator by } \sqrt{3 + x} + \sqrt{3}
\\
&\lim \limits_{x \to 0} \frac{1}{\sqrt{3 + x} + \sqrt{3}}
= \frac{\lim \limits_{x \to 0} 1 }{\lim \limits_{x \to 0} \sqrt{3 + x} + \lim \limits_{x \to 0} \sqrt{3}}
&& \text{ Quotient and root law.}
\\
& \lim \limits_{x \to 0}\frac{1}{\sqrt{3 + x} + \sqrt{3}}
= \frac{1}{\sqrt{\lim \limits_{x \to 0}(3 + x)} + \sqrt{3}}
&& \text{ Constant and root law.}\\

& \lim \limits_{x \to 0} \frac{1}{\sqrt{3 + x} + \sqrt{3}}
= \frac{1 }{\sqrt{3 + 0} + \sqrt{3}}
&& \text{ Sum, constant and special limit law.}\\


\end{aligned}
\end{equation}\\
\boxed{\displaystyle \lim \limits_{x \to 0} \frac{1}{\sqrt{3 + x} + \sqrt{3}} = \frac{1}{2 \sqrt{3}}}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...