Saturday, November 22, 2014

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 26

Determine the integral π40sec4θtan4θdθ



π40sec4θtan4θdθ=π40sec2θsec2θtan4θdθApply Trigonometric Identity sec2θ=tan2θ+1 for sec2θπ40sec4θtan4θdθ=π40(tan2θ+1)tan4θsec2θdθπ40sec4θtan4θdθ=π40(tan6θ+tan4θ)sec2θdθ


Let u=tanθ, then du=sec2θdθ. When θ=0,u=0,θ=π4,u=1. Therefore,


π40(tan6θ+tan4θ)sec2θdθ=10(u6+u4)duπ40(tan6θ+tan4θ)sec2θdθ=[u6+16+1+u4+14+1]10π40(tan6θ+tan4θ)sec2θdθ=[u77+u55]10π40(tan6θ+tan4θ)sec2θdθ=(1)77+(1)55(0)77(0)55π40(tan6θ+tan4θ)sec2θdθ=17+15π40(tan6θ+tan4θ)sec2θdθ=5+735π40(tan6θ+tan4θ)sec2θdθ=1235

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...