Thursday, November 6, 2014

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 44

Determine $f^{(n)} (x)$ if $\displaystyle f(x) = \frac{1}{(2-x)}$
Rewrite $f(x)$ to $f(x) = (2-x)^{-1}$, then solve for the 1st derivative.
We have,



$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{d}{dx}(2-x)^{-1}\\
\\
f'(x) &= -1(2-x)^{-2}\frac{d}{dx}(2-x)\\
\\
f'(x) &= -1(2-x)^{-2}(-1)\\
\\
f'(x) &= (2-x)^{-2}
\end{aligned}
\end{equation}
$

Solving for the 2nd derivative




$
\begin{equation}
\begin{aligned}
f''(x) &= \frac{d}{dx}(2-x)^{-2}\\
\\
f''(x) &= -2(2-x)^{-3} \frac{d}{dx} (2-x)\\
\\
f''(x) &= -2(2-x)^{-3}(-1)\\
\\
f''(x) &= 2(2-x)^{-3}
\end{aligned}
\end{equation}
$


Solving for the 3rd derivative



$
\begin{equation}
\begin{aligned}
f'''(x) &= 2 \frac{d}{dx} (2-x)^{-3}\\
\\
f'''(x) &= (2)(-3)(2-x)^{-4}\frac{d}{dx}(2-x)\\
\\
f'''(x) &= -6(2-x)^{-4}(-1)\\
\\
f'''(x) &= 6(2-x)^{-4}
\end{aligned}
\end{equation}
$


By solving the first, second and third derivative of the function. We get the pattern,
$f^{(n)} = n!(2-x)^{(-1-n)}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...