Thursday, November 20, 2014

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 42

Determine the integral π3π6csc3xdx

Using Integration by parts

csc3xdx=udv

where


dv=csc2xdxv=cotxu=cscxdu=cscxcotxdx


then


csc3xdx=udvcsc3xdx=uvvducsc3xdx=cscxcotxcotxcscxcotxdxcsc3xdx=cscxcotxcscxcot2xdxApply Trigonometric Identity csc2x=1+cot2x for cot2xcsc3xdx=cscxcotxcscx(csc2x1)dxcsc3xdx=cscxcotx((csc3x)cscx)dx)csc3xdx=cscxcotxcsc3xdx+cscxdxCombine like terms



csc3xdx+csc3xdx=cscxcotx+cscxdx2csc3xdx=cscxcotx+cscxdxcsc3xdx=cscxcotx+cscxdx2csc3xdx=12cscxcotx+12cscxdxcsc3xdx=12cscxcotx+12(ln(cscx+cotx))+ccsc3xdx=12cscxcotx12ln(cscx+cotx)+c


Evaluating the limit from π6 to π3


π3π6csc3xdx=[12cscxcotx12ln(cscx+cotx)]π3π6π3π6csc3xdx=12csc(π3)cot(π3)12ln(csc(π3)+cot(π3))+12csc(π6)cot(π6)+12ln(csc(π6)+cot(π6))π3π6csc3xdx=1\cancel2(\cancel233)(33)12ln(233+33)+1\cancel2(\cancel2)(3)+12ln(2+3)π3π6csc3xdx=3912ln(\cancel33\cancel3)+3+12ln(2+3)π3π6csc3xdx=1312ln(3)+3+12ln(2+3)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...