Thursday, November 20, 2014

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 42

Determine the integral $\displaystyle \int^{\frac{\pi}{3}}_{\frac{\pi}{6}} \csc^3 x dx$

Using Integration by parts

$\int \csc^3 x dx = \int udv$

where


$
\begin{equation}
\begin{aligned}

dv =& \csc^2 x dx
\\
\\
v =& - \cot x
\\
\\
u =& \csc x
\\
\\
du =& - \csc x \cot x dx

\end{aligned}
\end{equation}
$


then


$
\begin{equation}
\begin{aligned}

\int \csc^3 x dx =& \int u dv
\\
\\
\int \csc^3 x dx =& uv - \int vdu
\\
\\
\int \csc^3 x dx =& - \csc x \cot x - \int - \cot x \cdot - \csc x \cot x dx
\\
\\
\int \csc^3 x dx =& - \csc x \cot x - \int \csc x \cot^2 x dx
\qquad \text{Apply Trigonometric Identity } \csc^2 x = 1 + \cot^2 x \text{ for } \cot^2 x
\\
\\
\int \csc^3 x dx =& - \csc x \cot x - \int \csc x (\csc^2 x - 1) dx
\\
\\
\int \csc^3 x dx =& - \csc x \cot x - \left( \int (\csc^3 x) - \csc x) dx \right)
\\
\\
\int \csc^3 x dx =& - \csc x \cot x - \int \csc^3 x dx + \int \csc x dx
\qquad \text{Combine like terms}


\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\int \csc^3 x dx + \int \csc^3 x dx =& - \csc x \cot x + \int \csc x dx
\\
\\
2 \int \csc^3 x dx =& - \csc x \cot x + \int \csc x dx
\\
\\
\int \csc^3 x dx =& \frac{- \csc x \cot x + \int \csc x dx}{2}
\\
\\
\int \csc^3 x dx =& \frac{-1}{2} \csc x \cot x + \frac{1}{2} \int \csc x dx
\\
\\
\int \csc^3 x dx =& \frac{-1}{2} \csc x \cot x + \frac{1}{2} (- \ln (\csc x + \cot x)) + c
\\
\\
\int \csc^3 x dx =& \frac{-1}{2} \csc x \cot x - \frac{1}{2} \ln (\csc x + \cot x) + c


\end{aligned}
\end{equation}
$


Evaluating the limit from $\displaystyle \frac{\pi }{6} \text{ to } \frac{\pi}{3}$


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{3}}_{\frac{\pi}{6}} \csc^3 x dx =& \left[ \frac{-1}{2} \csc x \cot x - \frac{1}{2} \ln (\csc x + \cot x) \right]^{\frac{\pi}{3}}_{\frac{\pi}{6}}
\\
\\
\int^{\frac{\pi}{3}}_{\frac{\pi}{6}} \csc^3 x dx =& \frac{-1}{2} \csc \left( \frac{\pi}{3} \right) \cot \left( \frac{\pi}{3} \right) - \frac{1}{2} \ln \left( \csc \left( \frac{\pi}{3} \right) + \cot \left( \frac{\pi}{3} \right) \right) + \frac{1}{2} \csc \left( \frac{\pi}{6} \right) \cot \left( \frac{\pi}{6} \right) + \frac{1}{2} \ln \left( \csc \left( \frac{\pi}{6} \right) + \cot \left( \frac{\pi}{6} \right) \right)
\\
\\
\int^{\frac{\pi}{3}}_{\frac{\pi}{6}} \csc^3 x dx =& \frac{-1}{\cancel{2}} \left( \frac{\cancel{2} \sqrt{3}}{3} \right) \left( \frac{\sqrt{3}}{3} \right) - \frac{1}{2} \ln \left( \frac{2 \sqrt{3}}{3} + \frac{\sqrt{3}}{3} \right) + \frac{1}{\cancel{2}} (\cancel{2}) (\sqrt{3}) + \frac{1}{2} \ln (2 + \sqrt{3})
\\
\\
\int^{\frac{\pi}{3}}_{\frac{\pi}{6}} \csc^3 x dx =& \frac{-3}{9} - \frac{1}{2} \ln \left( \frac{\cancel{3} \sqrt{3}}{\cancel{3}} \right) + \sqrt{3} + \frac{1}{2} \ln (2 + \sqrt{3})
\\
\\
\int^{\frac{\pi}{3}}_{\frac{\pi}{6}} \csc^3 x dx =& \frac{-1}{3} - \frac{1}{2} \ln (\sqrt{3}) + \sqrt{3} + \frac{1}{2} \ln (2 + \sqrt{3})

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...