Monday, November 17, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 28

a.) Illustrate the graph of $f(x) = \sqrt{6 - x}$







b.) Sketch the graph of $f'$ using the graph from part (a)







c.) Find $f'(x)$ using the definition of a derivative. State the domains of $f$ and $f'$.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) =& \lim_{h \to 0} \frac{f(t + h) = f(t)}{h}
&&
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\sqrt{6 - (x + h)} - \sqrt{ 6 -x}}{h}
&& \text{Substitute $f(x + h)$ and $f(x)$}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\sqrt{6 - x - h} - \sqrt{ 6 -x}}{h} \cdot \frac{\sqrt{6 - x - h} + \sqrt{ 6 -x}}{\sqrt{6 - x - h} + \sqrt{ 6 -x}}
&& \text{Multiply both numerator and denominator by $(\sqrt{6 - x - h} + \sqrt{ 6 -x})$}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{6 - x - h - \cancel{\sqrt{(6 - x - h) + (6 -x)}} + \cancel{\sqrt{(6 - x - h) + (6 -x)}} - (6 -x )}{h(\sqrt{6 - x - h} + \sqrt{ 6 -x})}
&& \text{Combine like terms}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\cancel{6} - \cancel{x} - h - \cancel{6} + \cancel{x}}{h(\sqrt{6 - x - h} + \sqrt{ 6 -x})}
&& \text{}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{-\cancel{h}}{\cancel{h}(\sqrt{6 - x - h} + \sqrt{ 6 -x})}
&& \text{Cancel out like terms}
\\
\\
f'(x) =& \lim_{h \to 0} \left( \frac{-1}{\sqrt{6 - x - h} + \sqrt{6 - x}} \right) = \frac{-1}{\sqrt{6 - x - 0} + \sqrt{6 - x}} = \frac{-1}{\sqrt{6 - x} + \sqrt{ 6 - x}}
&& \text{Evaluate the limit}
&&
\\
\\
f'(x) =& \frac{-1}{2 \sqrt{6 -x}}
&&

\end{aligned}
\end{equation}
$


Both $f(x)$ and $f'(x)$ are root functions that are continuous for every positive values of $x$. However, the square root is placed in the denominator of $f'(x)$ making the function defined only for $6 - x > 0$.

$
\begin{array}{cc}
\text{For } f(x) \qquad & \text{For } f'(x) \\
6 - x \geq 0 \qquad & 6 - x > 0 \\
\, \, \, \, \, x \leq 6 \qquad & \, \, \, \, \, x < 6
\end{array}
$


Therefore, the domain of $f(x)$ is $(-\infty, 6]$ while the domain of $f'(x)$ is $(-\infty, 6)$

d.) Graph $f'$ and compare with your sketch in part (b)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...