Sunday, February 2, 2014

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 50

a.) Where does the normal line to the ellipse $x^2 - xy + y^2 = 3$ at the point $(-1,1)$ intersect the ellipse a second time?

Taking the derivative of the curve implicitly we have,


$
\begin{equation}
\begin{aligned}

& \frac{d}{dx} (x^2) - \frac{d}{dx} (xy) + \frac{d}{dx} (y^2) = \frac{d}{dx} (3)
\\
\\
& 2x - \left[ \frac{d}{dx} (x) \cdot y + x \cdot \frac{d}{dx} (y) \right] + \frac{d}{dy} (y^2) \frac{dy}{dx} = 0
\\
\\
& 2x - \left[ y + x \frac{dy}{dx} \right] + 2y \frac{dy}{dx} = 0
\\
\\
& 2x - y - x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0
\\
\\
& \frac{dy}{dx} = \frac{2x - y}{x - 2y}


\end{aligned}
\end{equation}
$


Recall that the slope of the normal line is equal to the negative reciprocal of the tangent line so..

$\displaystyle y'_N = \frac{- (x - 2y)}{2x - y} = \frac{-x + 2y}{2x - y}$

@ Point $(-1, 1)$


$
\begin{equation}
\begin{aligned}

y'_N =& \frac{-(-1) + 2 (1)}{2(-1) - (1)}
\\
\\
y'_N =& -1

\end{aligned}
\end{equation}
$


Thus the equation of the normal line is..


$
\begin{equation}
\begin{aligned}

y - (1) =& -1 (x - (-1))
\\
\\
y - \cancel{1} =& -x - \cancel{1}
\\
\\
y =& -x

\end{aligned}
\end{equation}
$


Now, since the normal line and the curve intersects, we can substitute $y$ at the equation of the ellipse, so...


$
\begin{equation}
\begin{aligned}

x^2 - xy + y^2 =&3
\\
\\
x^2 - x(-x) + (-x)^2 =& 3
\\
\\
x^2 + x^2 + x^2 =& 3
\\
\\
3x^2 =& 3
\\
\\
x^2 =& 1
\\
\\
x =& \pm 1

\end{aligned}
\end{equation}
$


Therefore,

The other point of intersection is at $x = 1$

b.) Sketch the ellipse and the normal line.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...