Sunday, February 2, 2014

Calculus: Early Transcendentals, Chapter 5, 5.3, Section 5.3, Problem 40

You need to evaluate the definite integral using the fundamental theorem of calculus, such that:
int_a^b f(u) du = F(b) - F(a)
int_1^2 (4+u^2)/(u^3) du = int_1^2 4/(u^3) du + int_1^2 (u^2)/(u^3) du
int_1^2 (4+u^2)/(u^3) du = 4int_1^2 (u^(-3)) du + int_1^2 1/u du
Using the formula int u^n = (u^(n+1))/(n+1)+ c yields:
4int_1^2 (u^(-3)) du = 4(u^(-2))/(-2) = -2/(u^2)|_1^2 = -2(1/2^2 - 1/1^2)
4int_1^2 (u^(-3)) du =-2(1/4 - 1) = -2*(-3/4) = 3/2
int_1^2 1/u du = ln u|_1^2 = ln 2 - ln 1 = ln 2
Hence, evaluating the definite integral, yields int_1^2 (4+u^2)/(u^3) du = 3/2 + ln 2.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...