Thursday, February 20, 2014

Calculus of a Single Variable, Chapter 6, 6.1, Section 6.1, Problem 19

Given,
y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)
let us find
y'=(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))'
= 2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x)
y''=(2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x))'
=4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x)
y'''=(4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x))'
=8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x)
y''''=(8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x))'
=(16 C_1e^2x +(-8)(-2) C_2e^(-2x) -8(-2) C_3sin(2x) +8(2) C_4 cos(2x))
=(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))
So lets check whether y'''' -16 y =0 or not
(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-16(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))
=(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))
=0
so,
y'''' -16 y =0

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...