Sunday, February 16, 2014

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 6

Evaluate $f + g$, $f - g$, $fg$ and $\displaystyle \frac{f}{g}$ of the function $f(x) = x^2 + 2x$ and $g(x) = 3x^2 - 1$ and find their domain

For $f+g$,

$
\begin{equation}
\begin{aligned}
f+g &= f(x) + g(x)\\
\\
f+g &= x^2 + 2x + 3x^2 - 1 && \text{Substitute } f(x) = x^2 + 2x \text{ and } g(x) = 3x^2 - 1\\
\\
f+g &= 4x^2 + 2x - 1
\end{aligned}
\end{equation}
$

The domain of $f(x) + g(x)$ is $(-\infty,\infty)$

For $f-g$

$
\begin{equation}
\begin{aligned}
f-g &= f(x) - g(x) \\
\\
f-g &= x^2 + 2x - \left( 3x^2 - 1 \right) && \text{Apply Distributive rule}\\
\\
f-g &= x^2 + 2x - 3x^2 + 1 && \text{Simplify}\\
\\
f-g &= -2x^2 + 2x + 1
\end{aligned}
\end{equation}
$

The domain of $f(x) - g(x)$ is $(-\infty, \infty)$

For $fg$

$
\begin{equation}
\begin{aligned}
fg &= f(x) \cdot g(x) \\
\\
fg &= \left( x^2 + 2x \right) \left( 3x^2 + 1 \right) && \text{Apply Distributive property}\\
\\
fg &= 3x^4 + x^2 + 6x^3 + 2x \text{ or } fg = 3x^4 + 6x^3 + x^2 + 2x
\end{aligned}
\end{equation}
$

The domain of $f(x) \cdot g(x)$ is $(-\infty, \infty)$

For $\displaystyle \frac{f}{g}$

$
\begin{equation}
\begin{aligned}
\frac{f}{g} &= \frac{f(x)}{g(x)}\\
\\
\frac{f}{g} &= \frac{x^2 + 2x}{3x^2 - 1}
\end{aligned}
\end{equation}
$

The domain of $\displaystyle \frac{f(x)}{g(x)} \text{ is } \left( -\infty, -\frac{1}{\sqrt{3}} \right) \bigcup \left( -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)\bigcup \left( \frac{1}{\sqrt{3}}, \infty \right)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...