Sunday, February 23, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 45

Suppose that f(x)=2x2x3, find f(x),f(x),f(x) and f4(x). Graph f,f,f and f on a common screen. Are the graphs consistent with the geometric interpretations of these derivatives?

Using the definition of derivative


f(x)=limh0f(x+h)f(x)hf(x)=limh02(x+h)2(x+h)3(2x2x3)hSubstitute f(x+h) and f(x)f(x)=limh02(x2+2xh+h2)(x3+3x2h+3xh2+h3)2x2+x3hExpand the equationf(x)=limh0\cancel2x2+4xh+2h2\cancelx33x2h3xh2h3\cancel2x2+\cancelx3hCombine like termsf(x)=limh04xh+2h23x2h3xh2h3hFactor the numeratorf(x)=limh0\cancelh(4x+2h3x23xhh2)\cancelhCancel out like termsf(x)=limh0(4x+2h3x23xhh2)=4x+2(0)3x23x(0)(0)2=4x+03x200Evaluate the limitf(x)=4x3x2


Using the 2nd derivative of the definition


f(x)=limh0f(x+h)=f(x)hf(x)=limh04(x+h)3(x+h)2(4x3x2)hSubstitute f(x+h) and f(x)f(x)=limh04x+4h3(x2+2xh+h2)4x+3x2hExpand the equationf(x)=limh0\cancel4x+4h\cancel3x26xh3h2\cancel4x+\cancel3x2hCombine like termsf(x)=limh04h6xh3h2hFactor the numeratorf(x)=limh0\cancelh(46x3h)\cancelhCancel out like termsf(x)=limh0(46x3h)=46x3(0)=46x0Evaluate the limitf(x)=46x


Using the 3rd derivative of the definition


f(x)=limh0f(x+h)=f(x)hf(x)=limh046(x+h)(46x)hSubstitute f(x+h) and f(x)f(x)=limh0\cancel4\cancel6x6h\cancel4+\cancel6xhExpand the equation and combine like termsf(x)=limh06\cancelh\cancelhCancel out like termsf(x)=6


Using the 4th derivative of the definition


f4(x)=limh0f(x+h)=f(x)hIf f is constant, then f(x+h)=f(x)f4(x)=limh06(6)hSubstitute f(x+h) and f(x)f4(x)=limh06+6h=limh00hSimplify the equationf4(x)=0




Graph f,f,f and f

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...