Sunday, February 23, 2014

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 45

Suppose that $f(x) = 2x^2 - x^3$, find $f'(x), f''(x), f'''(x)$ and $f^4(x)$. Graph $f, f', f''$ and $f'''$ on a common screen. Are the graphs consistent with the geometric interpretations of these derivatives?

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) =& \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
&&
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{2(x + h)^2 - (x + h)^3 - (2x^2 - x^3)}{h}
&& \text{Substitute $f(x + h)$ and $f(x)$}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{2(x^2 + 2xh + h^2) - (x^3 + 3x^2 h + 3xh^2 + h^3 ) - 2x^2 + x^3}{h}
&& \text{Expand the equation}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\cancel{2x^2} + 4xh + 2h^2 - \cancel{x^3} - 3x^2h - 3xh^2 - h^3 - \cancel{2x^2} + \cancel{x^3}}{h}
&& \text{Combine like terms}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{4xh + 2h^2 - 3x^2 h - 3xh^2 - h^3}{h}
&& \text{Factor the numerator}
\\
\\
\qquad f'(x) =& \lim_{h \to 0} \frac{\cancel{h}(4x + 2h - 3x^2 - 3xh - h^2)}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
f'(x) =& \lim_{h \to 0} (4x + 2h - 3x^2 - 3xh - h^2) = 4x + 2(0) - 3x^2 - 3x(0) - (0)^2 = 4x + 0 - 3x^2 - 0 - 0
&& \text{Evaluate the limit}
\\
\\
f'(x) =& 4x - 3x^2
&&

\end{aligned}
\end{equation}
$


Using the 2nd derivative of the definition


$
\begin{equation}
\begin{aligned}

\qquad f''(x) =& \lim_{h \to 0} \frac{f'(x + h) = f'(x)}{h}
&&
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{4(x + h) - 3 (x + h)^2 - (4x - 3x^2)}{h}
&& \text{Substitute $f'(x + h)$ and $f'(x)$}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{4x + 4h - 3 (x^2 + 2xh + h^2) - 4x + 3x^2}{h}
&& \text{Expand the equation}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{\cancel{4x} + 4h - \cancel{3x^2} - 6xh - 3h^2 - \cancel{4x} + \cancel{3x^2}}{h}
&& \text{Combine like terms}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{4h - 6xh - 3h^2}{h}
&& \text{Factor the numerator}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} \frac{\cancel{h}(4 - 6x - 3h)}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
\qquad f''(x) =& \lim_{h \to 0} (4 - 6x - 3h) = 4 - 6x - 3(0) = 4 - 6x - 0
&& \text{Evaluate the limit}
\\
\\
\qquad f''(x) =& 4 - 6x

\end{aligned}
\end{equation}
$


Using the 3rd derivative of the definition


$
\begin{equation}
\begin{aligned}

\qquad f'''(x) =& \lim_{h \to 0} \frac{f''(x + h) = f''(x)}{h}
&&
\\
\\
\qquad f'''(x) =& \lim_{h \to 0} \frac{4 - 6 (x + h) - (4 - 6x)}{h}
&& \text{Substitute $f''(x + h)$ and $f''(x)$}
\\
\\
\qquad f'''(x) =& \lim_{h \to 0} \frac{\cancel{4} - \cancel{6x} - 6h - \cancel{4} + \cancel{6x}}{h}
&& \text{Expand the equation and combine like terms}
\\
\\\qquad f'''(x) =& \lim_{h \to 0}\frac{-6\cancel{h}}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
\qquad f'''(x) =& -6
&&

\end{aligned}
\end{equation}
$


Using the 4th derivative of the definition


$
\begin{equation}
\begin{aligned}

\qquad f^4(x) =& \lim_{h \to 0} \frac{f'''(x + h) = f'''(x)}{h}
&&
\\
\\
\text{If $f'''$ is constant, then $f'''(x + h) = f'''(x)$}
\\
\\
\qquad f^4(x) =& \lim_{h \to 0} \frac{-6 - (-6)}{h}
&& \text{Substitute $f'''(x + h)$ and $f'''(x)$}
\\
\\
\qquad f^4(x) =& \lim_{h \to 0} \frac{-6 + 6}{h} = \lim_{h \to 0} \frac{0}{h}
&& \text{Simplify the equation}
\\
\\
\qquad f^4(x) =& 0

\end{aligned}
\end{equation}
$




Graph $f, f', f''$ and $f'''$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...