Thursday, April 4, 2019

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 25

At what rate is the water level rising when the water is 30cm deep?



We know that the volume $V=$ (area of the base)(length). Recall that the Area of trapezoid is $\displaystyle A = \frac{h}{2}(b_1+b_2)$.


$
\begin{equation}
\begin{aligned}
V &= \frac{h}{2} (b_1 + b_2) (10)\\
\\
V &= 5h (b_1 + b_2) && \text{We will take the measurement in meters to be consistent with the units}
\end{aligned}
\end{equation}
$

Notice that $b_1 = h + 0.3m$ so,

$
\begin{equation}
\begin{aligned}
V &= 5h(h + 0.3+0.3)\\
\\
V &= 5h (h + 0.6)\\
\\
V &= 6h^2 + 3h
\end{aligned}
\end{equation}
$


Taking the derivative with respect to time we have,

$
\begin{equation}
\begin{aligned}
\frac{dV}{dt} &= 5 \frac{d}{dh} (h^2) \frac{dh}{dt} + 3 \frac{d}{dh} +\frac{dh}{dt}\\
\\
\frac{dV}{dt} &= 5 (2h) \frac{dh}{dt} + 3(1) \frac{dh}{dt}\\
\\
\frac{dV}{dt} &= 10 h \frac{dh}{dt} + 3 \frac{dh}{dt}\\
\\
\frac{dh}{dt} &= \frac{\frac{dV}{dt}}{10h + 3} && \text{;where } \frac{dV}{dt} = 0.2 \frac{m^3}{\text{min}} \text{ and } h = 0.3m\\
\\
\frac{dh}{dt} &= \frac{0.2}{10(0.3) + 3}\\
\\
\frac{dh}{dt} &= \frac{1}{30} \frac{m}{\text{min}} \text{ or } \frac{1}{30} \frac{\cancel{m}}{\text{min}} \left( \frac{100\text{cm}}{1m}\right) = \frac{10}{3} \frac{m}{\text{min}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...