Friday, April 19, 2019

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 13

inttsec^2(2t)dt
If f(x) and g(x) are differentiable functions, then
intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx
If we write f(x)=u and g'(x)=v, then
intuvdx=uintvdx-int(u'intvdx)dx
Now using the above method of integration by parts,
inttsec^2(2t)dt=tintsec^2(2t)dt-int(d/dt(t)intsect^2(2t))dt
=t*tan(2t)/2-int(1*tan(2t)/2)dt
=1/2t*tan(2t)-1/2inttan(2t)dt
Now let's evaluate inttan(2t)dt by using the method of substitution,
Substitute x=cos(2t),=>dx=-2sin(2t)dt
inttan(2t)dt=int(sin(2t)/cos(2t))dt
=intdx/(-2x)
=-1/2ln|x|
substitute back x=cos(2t)
=-1/2ln|cos(2t)|
inttsec^2(2t)dt=1/2t*tan(2t)-1/2(-1/2ln|cos(2t)|+C
C is a constant
inttsec^2(2t)dt=1/2t*tan(2t)+1/4ln|cos(2t)|+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...