Friday, April 26, 2019

College Algebra, Chapter 5, 5.3, Section 5.3, Problem 46

Combine the expression $\displaystyle \log 12 + \frac{1}{2} \log 7 - \log 2$, using the Laws of Logarithm


$
\begin{equation}
\begin{aligned}

\log 12 + \frac{1}{2} \log 7 - \log 2 =& \log 12 + \log 7^{\frac{1}{2}} - \log 2
&& \text{Law of Logarithm } \log_a (A^C) = C \log_a A
\\
\\
\log 12 + \frac{1}{2} \log 7 - \log 2 =& \log \left( 12 \sqrt{7} \right) - \log 2
&& \text{Law of Logarithm } \log_a (AB) = \log_a A + \log_a B
\\
\\
\log 12 + \frac{1}{2} \log 7 - \log 2 =& \log \left( \frac{12 \sqrt{7}}{2} \right)
&& \text{Law of Logarithm } \log_a \left( \frac{A}{B} \right) = \log_a A - \log_a B
\\
\\
\log 12 + \frac{1}{2} \log 7 - \log 2 =& \log \left( 6 \sqrt{7} \right)
&& \text{Reduce to lowest term}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...