Saturday, April 20, 2019

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 40

Determine the equations of the tangent lines to the curve $\displaystyle y = \frac{\ln x}{x}$ at the points $(1,0)$ and $\displaystyle \left( e, \frac{1}{e} \right)$. Illustrate by graphing the curve and its tangent lines.

Solving for slope at $(1,0)$

$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx}\left( \frac{\ln x}{x} \right)\\
\\
y' &= \frac{x \frac{d}{dx}(\ln x) - (\ln x) \frac{d}{dx}(x) }{x^2}\\
\\
y' &= \frac{\cancel{x}\left( \frac{1}{\cancel{x}} \right) - \ln x(1)}{x^2}\\
\\
y' &= \frac{1 - \ln x}{x^2}\\
\\
y' &= \frac{1 - \ln 1}{(1)^2}\\
\\
y' &= \frac{1- 0}{1}\\
\\
y' &= 1
\end{aligned}
\end{equation}
$


Solving for slope at $\displaystyle \left( e, \frac{1}{e} \right)$

$
\begin{equation}
\begin{aligned}
y' &= \frac{1-\ln x}{x^2}\\
\\
y' &= \frac{1 - \ln e}{(e)^2}\\
\\
y' &= \frac{1-1}{e^2}\\
\\
y' &= \frac{0}{e^2}\\
\\
y' &= 0
\end{aligned}
\end{equation}
$


Using point slope form

$
\begin{equation}
\begin{aligned}
y- y_1 &= m(x - x_1)\\
\\
y - \frac{1}{e} &= 0(x - e)\\
\\
y - \frac{1}{e} &= 0\\
\\
y &= \frac{1}{e}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...