Suppose that $f(x) = x^5 - 2x^3 + x$
a.) Determine the intervals of increase or decrease.
If $f(x) = x^5 - 2x^3 + x$ then,
$
\begin{equation}
\begin{aligned}
f'(x) =& 5x^4 - 6x^2 + 1
\\
\\
f''(x) =& 20x^3 - 12x
\end{aligned}
\end{equation}
$
To find the critical numbers, we set $f'(x) = 0$, so..
$
\begin{equation}
\begin{aligned}
f'(x) = 0 =& 5x^4 - 6x^2 + 1
\\
\\
0 =& 5x^4 - 6x^2 + 1
\\
\\
0 =& (5x^2 - 1)(x^2 - 1)
\end{aligned}
\end{equation}
$
The critical numbers are at
$
\begin{array}{ccc}
\displaystyle x = \pm \sqrt{\frac{1}{5}} & \text{and} & x = \pm \sqrt{1} \\
\displaystyle x = \pm \frac{1}{\sqrt{5}} & \text{and} & x = \pm 1
\end{array}
$
Hence, we can divide the interval of $f$ by:
$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f'(x) & f \\
\hline\\
x < -1 & + & \text{increasing on} (- \infty, -1) \\
\hline\\
-1 < x < \frac{-1}{\sqrt{5}} & - & \text{decreasing on} \left( - 1, \frac{-1}{\sqrt{5}} \right) \\
\hline\\
\frac{-1}{\sqrt{5}} < x < \frac{1}{\sqrt{5}} & + & \text{increasing on} \left( \frac{-1}{\sqrt{5}} , \frac{1}{\sqrt{5}}\right) \\
\hline\\
\frac{1}{\sqrt{5}} < x < 1 & - & \text{decreasing on} \left( \frac{1}{\sqrt{5}}, 1 \right) \\
\hline\\
x > 1 & + & \text{increasing on} (1, \infty)\\
\hline
\end{array}
$
These data obtained by substituting any values of $x$ to $f'(x)$ within the specified interval. Check its sign, if it's positive, it means that the curve is increasing on that interval. On the other hand, if the sign is negative, it means that the curve is decreasing on that interval.
b.) Find the local maximum and minimum values.
We will use Second Derivative Test to evaluate $f''(x)$ at these critical numbers:
$
\begin{equation}
\begin{aligned}
& \text{So when $x = 1$,}
&& \text{when $x = -1$,} \\
\\
\\
& f''(1) = 20(1)^3 - 12(1)
&& f''(-1) = 20(-1)^3 - 12 (-1)\\
\\
\\
& f''(1) = 8
&& f''(-1) = -8
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
\text{when } x =& \frac{1}{\sqrt{5}},
&& \text{when } x = \frac{-1}{\sqrt{5}}
\\
\\
f'' \left( \frac{1}{\sqrt{5}} \right) =& 20 \left( \frac{1}{\sqrt{5}} \right)^3 - 12 \left( \frac{1}{\sqrt{5}} \right)
&& f'' \left( \frac{-1}{\sqrt{5}} \right) = \frac{8 \sqrt{5}}{5}
\end{aligned}
\end{equation}
$
Since $f'(1)$ and $\displaystyle f'\left( \frac{-1}{\sqrt{5}} \right) = 0, f''(1)$ and $\displaystyle f''\left( \frac{-1}{\sqrt{5}} \right) > 0$ are local minimums. On the other hand, since $f(-1)$ and $\displaystyle f' \left( \frac{1}{\sqrt{5}} \right) = 0, f''(-1)$ and $\displaystyle f''\left( \frac{1}{\sqrt{5}} \right) < 0, f(-1) = 0$ and $\displaystyle f\left( \frac{1}{\sqrt{5}} \right) = 0.2862$ are local maximums.
c.) Find the intervals of concavity and the inflection points.
We set $f''(x) = 0$, to determine the inflection points..
$
\begin{equation}
\begin{aligned}
f''(x) = 0 =& 20x^3 - 12x
\\
\\
0 =& 20x ^3 - 12x
\\
\\
0 =& 4x (5x^2 - 3)
\\
\\
x =& 0 \text{ and } 5x^2 - 3 = 0
\end{aligned}
\end{equation}
$
Therefore, the inflection points are $x = 0$ and $\displaystyle x = \pm \sqrt{\frac{3}{5}}$.
Let's divide the interval to determine the concavity..
$
\begin{array}{|c|c|c|}
\hline\\
\text{Interval} & f''(x) & \text{Concavity} \\
\hline\\
\displaystyle x < - \sqrt{\frac{3}{5}} & - & \text{Downward} \\
\hline\\
\displaystyle - \sqrt{\frac{3}{5}} < x < 0 & + & \text{Upward} \\
\hline\\
\displaystyle 0 < x < \sqrt{\frac{3}{5}} & - & \text{Downward} \\
\hline\\
\displaystyle x > \sqrt{\frac{3}{5}} & + & \text{Upward}\\
\hline
\end{array}
$
These values are obtained by evaluating $f''(x)$ within the specified interval. The concavity is upward when the sign of $f''(x)$ is positive. On the other hand, the concavity is downward when the sign of $f''(x)$ is negative.
d.) Using the values obtained, illustrate the graph of $f$.
Tuesday, April 23, 2019
Single Variable Calculus, Chapter 4, 4.3, Section 4.3, Problem 34
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
The given two points of the exponential function are (2,24) and (3,144). To determine the exponential function y=ab^x plug-in the given x an...
-
The play Duchess of Malfi is named after the character and real life historical tragic figure of Duchess of Malfi who was the regent of the ...
-
The only example of simile in "The Lottery"—and a particularly weak one at that—is when Mrs. Hutchinson taps Mrs. Delacroix on the...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
-
Macbeth is reflecting on the Weird Sisters' prophecy and its astonishing accuracy. The witches were totally correct in predicting that M...
No comments:
Post a Comment