Wednesday, April 10, 2019

College Algebra, Chapter 9, 9.2, Section 9.2, Problem 50

Find the partial sum of an arithmetic sequence $\displaystyle -3 + \left( \frac{-3}{2} \right) + 0 + \frac{3}{2} + 3 +.......+30$

Using both formulas to solve for $n$, since $\displaystyle d = \frac{3}{2}$.


$
\begin{equation}
\begin{aligned}

\frac{n}{2} \left[ 2a + (n - 1) d \right] =& n \left( \frac{a + a_n}{2} \right)
&&
\\
\\
2a + (n - 1)d =& a+ a_n
&& \text{Multiply both sides by } \frac{2}{n}
\\
\\
(n - 1)d =& a_n - a
&& \text{Combine like terms}
\\
\\
n - 1 =& \frac{a_n - a}{d}
&& \text{Divide by } d
\\
\\
n =& \frac{a_n - a}{d} + 1
&& \text{Add } 1
\\
\\
n =& \frac{30 - (-3)}{\displaystyle \frac{3}{2}} + 1
&&
\\
\\
n =& 23
&&

\end{aligned}
\end{equation}
$


Now we solve the partial sum,


$
\begin{equation}
\begin{aligned}

S_{23} =& 23 \left( \frac{-3 + 30}{2} \right)
\\
\\
S_{23} =& \frac{621}{2}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...