Tuesday, April 9, 2019

College Algebra, Chapter 5, Review Exercise, Section Review Exercise, Problem 88

Determine the inverse of the function $f(x) = 2^{3^x}$ and state its domain and range.
To find the inverse, we set $y = f(x)$

$
\begin{equation}
\begin{aligned}
y &= 2^{3^x} && \text{Solve for $x$; take ln of both sides}\\
\\
\ln y &= 3^x (\ln 2) && \text{Divide both sides by ln 2}\\
\\
\frac{\ln y }{\ln 2} &= 3^x && \text{Take ln of both sides}\\
\\
\ln \left( \frac{\ln y}{\ln 2} \right) &= x (\ln 3) && \text{Divide both sides by ln 3}\\
\\
\frac{\ln \left( \frac{\ln y}{\ln 2} \right)}{\ln 3} &= x \\
\\
\frac{\ln \left( \frac{\ln x}{\ln 2} \right)}{\ln 3} &= y
\end{aligned}
\end{equation}
$

Thus, the inverse of $\displaystyle f(x) = f^{-1}(x) = \frac{\ln \left( \frac{\ln x}{\ln 2} \right)}{\ln 3}$
To find the domain, we want

$
\begin{equation}
\begin{aligned}
\frac{\ln x}{\ln 2} &> 0 && \text{Multiply ln 2 both sides}\\
\\
\ln x &> 0 && \text{Raise to $e$ both sides}\\
\\
x &> e^0 && \text{Evaluate}\\
\\
x &> 1
\end{aligned}
\end{equation}
$

Thus, the domain is $(1,\infty)$. Then by substituting the domain in the function we get the range of $(-\infty,2)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...