Saturday, March 4, 2017

College Algebra, Chapter 3, 3.4, Section 3.4, Problem 22

A linear function $g(x) = -4x + 2$.

a.) Find the average rate of change of the function between $x = a$ and $x = a + h$.


$
\begin{equation}
\begin{aligned}

\text{average rate of change } =& \frac{g(b) - g(a)}{b - a}
&& \text{Model}
\\
\\
\text{average rate of change } =& \frac{g(a + h) - g(a)}{a + h - a}
&& \text{Substitute } b = a + h \text{ and } a = a
\\
\\
\text{average rate of change } =& \frac{-4(a + h) + 2 - [-4 (a) + 2]}{h}
&& \text{Simplify}
\\
\\
\text{average rate of change } =& \frac{-4a - 4h + 2 + 4a - 2}{h}
&& \text{Combine like terms}
\\
\\
\text{average rate of change } =& \frac{-4 \cancel{h}}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
\text{average rate of change } =& -4
&& \text{Answer}

\end{aligned}
\end{equation}
$


b.) Show that the average rate of change is the same as the slope of the line.

Using slope of the line,

$\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}$, where $y = g(x)$


$
\begin{equation}
\begin{aligned}

& \text{Solving for } y_2
&& \text{Solving for } y_1
\\
\\
& y_2 = -4x_2 + 2
&& y_1 = -4x_1 + 2
\\
\\
& y_2 = -4 (a + h) + 2
&& y_1 = -4(a) + 2
\\
\\
& y_2 = -4a - 4h + 2
&& y_1 = -4a + 2

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

m =& \frac{y_2 - y_1}{x_2 - x_1}
&& \text{Model}
\\
\\
m =& \frac{-4a - 4h + 2 - (-4a + 2)}{a + h - a}
&& \text{Substitute } x_1 = a, x_2 = a + h, y_1 = -4a + 2 \text{ and } y_2 = -4a - 4h + 2
\\
\\
m =& \frac{-4a - 4h + 2 + 4a - 2}{h}
&& \text{Combine like terms}
\\
\\
m =& \frac{-4 \cancel{h}}{\cancel{h}}
&& \text{Cancel out like term}
\\
\\
m =& -4
&& \text{Answer}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...