Monday, March 20, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 52

Find the indefinite integral $\displaystyle \int \sin^3 x \cos^4 x dx$. Illustrate by graphing both the integrand and its antiderivative (taking $c = 0$).

$
\begin{equation}
\begin{aligned}
\int \sin^3 x \cos^4 x dx &= \int \sin^2 x \sin x \cos^4 x dx \qquad \text{Apply Trigonometric Identity } \sin^2 x + \cos^2 x = 1 \text{ for } \sin^2 x\\
\\
\int \sin^3 x \cos^4 x dx &= \int \left( 1 - \cos^2 x \right) \sin x \cos^4 x dx\\
\\
\int \sin^3 x \cos^4 x dx &= \int \left( \cos^4 x - \cos^6 x \right) \sin x dx
\end{aligned}
\end{equation}
$

Let $u = \cos x$, then $du = -\sin x dx$, so $\sin x dx = - du$. Thus,

$
\begin{equation}
\begin{aligned}
\int \left( \cos^4 x - \cos^6 x \right) \sin x dx &= \int \left( u^4 - u^6\right) - du\\
\\
\int \left( \cos^4 x - \cos^6 x \right) \sin x dx &= \int - \left( u^4 - u^6\right) du\\
\\
\int \left( \cos^4 x - \cos^6 x \right) \sin x dx &= \int \left( u^6 - u^4 \right) du\\
\\
\int \left( \cos^4 x - \cos^6 x \right) \sin x dx &= \frac{u^{6+1}}{6+1} - \frac{u^{4+1}}{4+1} + c\\
\\
\int \left( \cos^4 x - \cos^6 x \right) \sin x dx &= \frac{u^7}{7} - \frac{u^5}{5} + c\\
\\
\int \left( \cos^4 x - \cos^6 x \right) \sin x dx &= \frac{(\cos x)^7}{7} - \frac{(\cos x)^5}{5} + c\\
\\
\int \left( \cos^4 x - \cos^6 x \right) \sin x dx &= \frac{\cos^7 x }{7} - \frac{\cos^5 x}{5} + c
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...