Friday, March 31, 2017

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 64

Determine the $\displaystyle \lim_{x \to \infty} \left( \frac{2x-3}{2x+5} \right)^{2x + 1}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
If we let $\displaystyle y = \left( \frac{2x-3}{2x+5} \right)^{2x + 1}$, then

$\displaystyle \ln y = (2x +1) \ln \left( \frac{2x-3}{2x+5} \right)$
So,

$\displaystyle \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \left[ (2x+1) \ln \left( \frac{2x-3}{2x+5} \right) \right]$
But, we can rewrite the limit as...

$\displaystyle \lim_{x \to \infty} \left[ (2x+1) \ln \left( \frac{2x-3}{2x+5} \right) \right] = \lim_{x \to \infty} \frac{\ln\left(\frac{2x-3}{2x+5}\right)}{\frac{1}{2x+1}}$
Also, we can use the Laws of Logarithm to simplify it further
$\displaystyle \lim_{x \to \infty} \frac{\ln\left(\frac{2x-3}{2x+5}\right)}{\frac{1}{2x+1}} = \lim_{x \to \infty} \frac{\ln(2x-3)-\ln(2x+5)}{(2x+1)^{-1}}$

Now, by applying L'Hospital's Rule...


$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} \frac{\ln(2x-3)-\ln(2x+5}{(2x+1)^{-1}} &= \lim_{x \to \infty} \frac{\frac{2}{2x-3} - \frac{2}{2x+5}}{-1(2x+1)^{-2}(2)} = \lim_{x \to \infty} \frac{\frac{2(2x+5)-2(2x-3)}{(2x-3)(2x+5)}}{\frac{-2}{(2x+1)^2}}\\
\\
&= \lim_{x \to \infty} - \frac{2[(2x+5)-(2x-3)](2x+1)^2}{2(2x-3)(2x+5)} = \lim_{x \to \infty} \frac{-8(2x+1)^2}{(2x-3)(2x+5)}\\
\\
&= -\lim_{x \to \infty} \frac{8(2x+1)^2}{4x^2 + 4x - 15}
\end{aligned}
\end{equation}
$


If we evaluate the limit, we will still get an indeterminate form, so we must use L'Hospital's Rule once more. Then,

$
\begin{equation}
\begin{aligned}
-\lim_{x \to \infty} \frac{8(2x+1)^2}{4x^2 + 4x - 15} &= - \lim_{x \to \infty} \frac{8[2 (2x+1) (2)]}{8x +4}\\
\\
&= -\lim_{x \to \infty} \frac{32(2x+1)}{4(2x+1)}\\
\\
&= -\lim_{x \to \infty} \frac{32}{4}\\
\\
&= -8
\end{aligned}
\end{equation}
$


Hence,
$\displaystyle \lim_{x \to \infty} \ln y= \lim_{x \to \infty} \left[ (2x+1) \ln \left( \frac{2x-3}{2x+5} \right) \right] = -8$
Therefore, we have...
$\displaystyle \lim_{x \to \infty} = \left( \frac{2x-3}{2x+5} \right)^{2x+1} = \lim_{x \to \infty} e^{\ln y} = e^{-8}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...